Multiple solutions for two classes of quasilinear problems defined on a nonreflexive Orlicz-Sobolev space

被引:3
|
作者
Alves, Claudianor O. [1 ]
Bahrouni, Sabri [2 ]
Carvalho, Marcos L. M. [3 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Monastir, Math Dept, TN-5019 Monastir, Tunisia
[3] Univ Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, Brazil
来源
ARKIV FOR MATEMATIK | 2022年 / 60卷 / 01期
关键词
Orlicz-Sobolev spaces; variational methods; quasilinear elliptic problems; Delta(2)-condition; modular; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EIGENVALUE PROBLEM; EXISTENCE; OPERATORS;
D O I
10.4310/ARKIV.2022.v60.n1.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence and multiplicity of solutions for a large class of quasilinear problems on a nonreflexive Orlicz-Sobolev space. Here, we use the variational methods developed by Szulkin [34] combined with some properties of the weak* topology.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [21] Existence of Multi-peak Solutions for a Class of Quasilinear Problems in Orlicz-Sobolev Spaces
    Claudianor O. Alves
    Ailton R. da Silva
    Acta Applicandae Mathematicae, 2017, 151 : 171 - 198
  • [22] A note on the existence of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Yang, Yang
    Zhang, Jihui
    BOUNDARY VALUE PROBLEMS, 2012, : 1 - 7
  • [23] Existence of Multi-peak Solutions for a Class of Quasilinear Problems in Orlicz-Sobolev Spaces
    Alves, Claudianor O.
    da Silva, Ailton R.
    ACTA APPLICANDAE MATHEMATICAE, 2017, 151 (01) : 171 - 198
  • [24] Multiplicity of Solutions for a Class of Quasilinear Elliptic Systems in Orlicz-Sobolev Spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 881 - 912
  • [25] The asymptotic behavior of solutions to a class of inhomogeneous problems: an Orlicz-Sobolev space approach
    Grecu, Andrei
    Stancu-Dumitru, Denisa
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (38) : 1 - 20
  • [26] Quasilinear elliptic problem in anisotropic Orlicz-Sobolev space on unbounded domain
    Wronski, Karol
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025, 204 (01) : 147 - 161
  • [27] Boundary behavior of Orlicz-Sobolev classes
    D. A. Kovtonyuk
    V. I. Ryazanov
    R. R. Salimov
    E. A. Sevost’yanov
    Mathematical Notes, 2014, 95 : 509 - 519
  • [28] TOWARD THE THEORY OF ORLICZ-SOBOLEV CLASSES
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (06) : 929 - 963
  • [29] Boundary behavior of Orlicz-Sobolev classes
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    MATHEMATICAL NOTES, 2014, 95 (3-4) : 509 - 519
  • [30] QUASILINEAR ELLIPTIC PROBLEMS ON NON-REFLEXIVE ORLICZ-SOBOLEV SPACES
    Silva, Edcarlos D.
    Carvalho, Marcos L. M.
    Silva, Kaye
    Goncalves, Jose, V
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (02) : 587 - 612