3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications

被引:125
|
作者
Mondal, Sudip [1 ,2 ]
Pal, Umapada [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Apdo Postal J-48, Puebla 72570, Mexico
[2] Pukyong Natl Univ, Dept Biomed Engn, Nanobiomed Lab, 45 Yongso Ro, Busan 48513, South Korea
关键词
Hydroxyapatite; Scaffold; Tissue engineering; Rapid prototyping; Biomedical application; MECHANICAL-PROPERTIES; COMPOSITE SCAFFOLD; DEGRADABLE SCAFFOLD; TISSUE; FABRICATION; SYSTEM; BIOMATERIALS; MATRIX; BIOCOMPATIBILITY; NANOFIBERS;
D O I
10.1016/j.jddst.2019.101131
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Bone tissue engineering is the technology of healing bone defects in critical clinical conditions using functional tissue-engineering substitutes. Hydroxyapatite (HAp), as a biomaterial, received extensive attention for biomedical applications in the last 15 years. HAp has been utilized systematically as a filling material for bone defects, artificial bone grafting, and as a scaffold material in prosthesis revision surgery. In this brief review, we discuss on the fundamental aspects of porous HAp scaffolds, which define their utility in bone-tissue engineering and orthopedic drug delivery applications. The review contains six sections. Section 1 provides a brief introduction on tissue engineering, history of using bio-ceramics in tissue engineering, and the present state-of-the-art scenario of tissue engineering. In section 2, we provide a brief survey of biomaterials of different kinds utilized for tissue engineering. Section 3 provides a brief review on conventional scaffold fabrication techniques and their advantages and disadvantages. In section 4, the essential physio-chemical and biological cues to the development of HAp scaffolds and their compatibility with the surrounding cells and tissues, along with their application potentials for drug loading and site-specific drug releasing are discussed. Sections 5 & 6 provide the prospects of HAp scaffolds in biomedical applications, and conclusions, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Icariin-releasing 3D printed scaffold for bone regeneration
    Zou, Lin
    Hu, Le
    Pan, Panpan
    Tarafder, Solaiman
    Du, Mingzu
    Geng, Yusheng
    Xu, Gan
    Chen, Li
    Chen, Jingdi
    Lee, Chang H.
    COMPOSITES PART B-ENGINEERING, 2022, 232
  • [22] 3D Printing Hierarchical Porous Nanofibrous Scaffold for Bone Regeneration
    Hu, Zhiai
    Lin, Hengyi
    Wang, Zhenming
    Yi, Yating
    Zou, Shujuan
    Liu, Hao
    Han, Xianglong
    Rong, Xin
    SMALL, 2024,
  • [23] Development of hybrid scaffold with biomimetic 3D architecture for bone regeneration
    Vashisth, Priya
    Bellare, Jayesh R.
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2018, 14 (04) : 1325 - 1336
  • [24] 3D printed PCL/SrHA scaffold for enhanced bone regeneration
    Liu, Dinghua
    Nie, Wei
    Li, Dejian
    Wang, Weizhong
    Zheng, Lixia
    Zhang, Jingtian
    Zhang, Jiulong
    Peng, Chen
    Mo, Xiumei
    He, Chuanglong
    CHEMICAL ENGINEERING JOURNAL, 2019, 362 : 269 - 279
  • [25] Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration
    Kim, Yoontae
    Lee, Eun-Jin
    Davydov, Albert, V
    Frukhtbeyen, Stanislav
    Seppala, Jonathan E.
    Takagi, Shozo
    Chow, Laurence
    Alimperti, Stella
    BIOMEDICAL MATERIALS, 2021, 16 (04)
  • [26] 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration
    Wang, Yihan
    Xie, Changnan
    Zhang, Zhiming
    Liu, Haining
    Xu, Haixia
    Peng, Ziyue
    Liu, Chun
    Li, Jianjun
    Wang, Chengqiang
    Xu, Tao
    Zhu, Lixin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (26) : 29506 - 29520
  • [27] Engineered tridimensional (3D) hydroxyapatite (HA) scaffold to support bone resorption
    Cappariello, A.
    Peruzzi, B.
    Del Fattore, A.
    Ugazio, A.
    Teti, A. M.
    BONE, 2011, 48 : S125 - S125
  • [28] 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering
    Shao, Huiping
    He, Jianzhuang
    Lin, Tao
    Zhang, Zhinan
    Zhang, Yumeng
    Liu, Shuwen
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 1163 - 1170
  • [29] Local multi-drug delivery and osteogenesis in bone metastasis of prostate cancer by a core-shell 3D printed scaffold
    Yourdkhani, Alaleh
    Esfandyari-Manesh, Mehdi
    Ranjbaran, Paniz
    Dinarvand, Rassoul
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2024, 92
  • [30] 3D Printed Polypyrrole Scaffolds for pH-Dependent Drug Delivery for Bone Regeneration
    Lawrence, Matthew
    Seguin, Cheryle
    Price, Aaron
    NANO-, BIO-, INFO-TECH SENSORS AND WEARABLE SYSTEMS, 2021, 11590