Equilibrium phase-space density distribution in numerical dynamical models of open clusters

被引:5
|
作者
Danilov, VM [1 ]
机构
[1] Ural State Univ, Astron Observ, Yekaterinburg 620083, Russia
关键词
D O I
10.1134/1.163853
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In dynamical models for open clusters, virial equilibrium is not achieved over the violent relaxation time scale tau(vr). The stars form an equilibrium distribution in (epsilon, epsilon zeta, l) space, where epsilon and l are the energy and angular momentum per unit stellar mass in the combined field of the Galaxy and cluster and epsilon zeta is the energy of motion perpendicular to the Galactic plane per unit mass of cluster stars in the gravitational field of the Galaxy. This distribution of stars changes little when t > tau(vr). The stellar phase-space distribution corresponding to this type of equilibrium and the regular cluster potential vary periodically (or quasi-periodically) with time. This phase-space equilibrium is probably possible due to an approximate balance in the stellar transitions between phase-space cells over times equal to the oscillation period for the regular cluster field. (C) 2000 MAIK "Nauka/Interperiodica".
引用
收藏
页码:298 / 308
页数:11
相关论文
共 50 条
  • [41] STRUCTURAL LOCALIZATION PHENOMENA AND THE DYNAMICAL PHASE-SPACE ANALOGY
    HUNT, GW
    BOLT, HM
    THOMPSON, JMT
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 425 (1869): : 245 - 267
  • [42] Quantum gravity, dynamical phase-space and string theory
    Freidel, Laurent
    Leigh, Robert G.
    Minic, Djordje
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (12):
  • [43] PAINTING THE PHASE-SPACE PORTRAIT OF AN INTEGRABLE DYNAMICAL SYSTEM
    COFFEY, S
    DEPRIT, A
    DEPRIT, E
    HEALY, L
    SCIENCE, 1990, 247 (4944) : 833 - 836
  • [44] Bayesian phase-space modelling of star-forming regions, stellar associations, and open clusters
    Olivares, J.
    Bouy, H.
    Dorn-Wallenstein, T. Z.
    Berihuete, A.
    ASTRONOMY & ASTROPHYSICS, 2025, 693
  • [45] DISTRIBUTION OF PHASE DENSITY IN A 6-DIMENSIONAL PHASE-SPACE FOR INTENSIVE ION-BEAMS
    BUDANOV, YA
    ZHURNAL TEKHNICHESKOI FIZIKI, 1984, 54 (06): : 1068 - 1075
  • [46] Phase-space shapes of clusters and rich groups of galaxies
    Wojtak, Radoslaw
    ASTRONOMY & ASTROPHYSICS, 2013, 559
  • [47] WIGNERS PHASE-SPACE DENSITY-FUNCTION
    IAGOLNITZER, D
    NATURE, 1984, 310 (5979) : 635 - 635
  • [48] PHASE-SPACE MODELS OF SOLITARY ELECTRON HOLES
    LYNOV, JP
    MICHELSEN, P
    PECSELI, HL
    RASMUSSEN, JJ
    SORENSEN, SH
    PHYSICA SCRIPTA, 1985, 31 (06): : 596 - 605
  • [49] Phase-space analysis for hydrodynamic traffic models
    Saavedra, P.
    Velasco, R. M.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [50] Homogenization and kinetic models in extended phase-space
    Golse, Francois
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2012, 3 (01): : 71 - 89