A bound for diameter of arithmetic hyperbolic orbifolds

被引:2
|
作者
Belolipetsky, Mikhail [1 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
关键词
Arithmetic hyperbolic orbifold; diameter; volume; Cheeger constant; VOLUME;
D O I
10.1007/s10711-021-00616-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let O be a closed n-dimensional arithmetic (real or complex) hyperbolic orbifold. We show that the diameter of O is bounded above by c(1) log vol(O) + c(2)/h(O), where h(O) is the Cheeger constant of O, vol(O) is its volume, and constants c1, c2 depend only on n.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 50 条
  • [1] A bound for diameter of arithmetic hyperbolic orbifolds
    Mikhail Belolipetsky
    Geometriae Dedicata, 2021, 214 : 295 - 302
  • [2] Thickness of skeletons of arithmetic hyperbolic orbifolds
    Alpert, Hannah
    Belolipetsky, Mikhail
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (03) : 749 - 765
  • [3] A lower bound for the volumes of complex hyperbolic orbifolds
    X. Fu
    L. Li
    X. Wang
    Geometriae Dedicata, 2011, 155 : 21 - 30
  • [4] A lower bound for the volumes of complex hyperbolic orbifolds
    Fu, X.
    Li, L.
    Wang, X.
    GEOMETRIAE DEDICATA, 2011, 155 (01) : 21 - 30
  • [5] Lower bound for the volumes of quaternionic hyperbolic orbifolds
    Han, Minghua
    Xie, Baohua
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (01) : 47 - 56
  • [6] Counting Salem Numbers of Arithmetic Hyperbolic 3-Orbifolds
    Mikhail Belolipetsky
    Matilde Lalín
    Plinio G. P. Murillo
    Lola Thompson
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 553 - 569
  • [7] On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds
    Marklof, J
    NONLINEARITY, 1996, 9 (02) : 517 - 536
  • [8] The three smallest compact arithmetic hyperbolic 5-orbifolds
    Emery, Vincent
    Kellerhals, Ruth
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (02): : 817 - 829
  • [9] Counting Salem Numbers of Arithmetic Hyperbolic 3-Orbifolds
    Belolipetsky, Mikhail
    Lalin, Matilde
    Murillo, Plinio G. P.
    Thompson, Lola
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (02): : 553 - 569
  • [10] A LOWER BOUND FOR THE VOLUME OF HYPERBOLIC 3-ORBIFOLDS
    MEYERHOFF, R
    DUKE MATHEMATICAL JOURNAL, 1988, 57 (01) : 185 - 203