Synthesis and optimization of nanocomposite membranes based on SPEEK and perovskite nanoparticles for polymer electrolyte membrane fuel cells

被引:32
|
作者
Hosseinabadi, Parisa [1 ]
Hooshyari, Khadijeh [2 ]
Javanbakht, Mehran [3 ,4 ]
Enhessari, Morteza [5 ]
机构
[1] Univ New South Wales, Sch Chem, ARC Ctr Excellence Exciton Sci, Sydney, NSW 2052, Australia
[2] Urmia Univ, Fac Chem, Dept Appl Chem, Orumiyeh, Iran
[3] Amirkabir Univ Technol, Dept Chem, Tehran, Iran
[4] Amirkabir Univ Technol, Renewable Energy Res Ctr, Solar Cell & Fuel Cell Lab, Tehran, Iran
[5] Islamic Azad Univ, Dept Chem, Naragh Branch, Naragh, Iran
关键词
PROTON-EXCHANGE MEMBRANE; ETHER ETHER KETONE; COMPOSITE MEMBRANES; ELECTROCHEMICAL PROPERTIES; FE2TIO5; NANOPARTICLES; IONIC LIQUID; CONDUCTIVITY; POLYBENZIMIDAZOLE; FABRICATION; OXIDE;
D O I
10.1039/c9nj03980e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The addition of BaZr0.9Y0.1O3-delta (BZY10) nanoparticles as a perovskite material with a proton conductor oxide structure to enhance the performance of sulfonated poly(ether ether ketone) (SPEEK) in proton exchange membrane fuel cells (PEMFCs) has been investigated in this work. The presence of hydroxyl ion functions in this material as a compatibilizer enhances the physical interactions between the polymer matrix and inorganic nanoparticles, leading to higher proton conductivity and improvement in thermal, mechanical and oxidative stability. Design-Expert software (DoE) and three-factor response surface modeling (RSM) were utilized for optimization of the BZY10 nanoparticle incorporation and degree of sulfonation (DS) of SPEEK regarding the experimental data obtained for proton conductivity, water uptake, and oxidative and mechanical stability, for different ranges of BZY10 nanoparticle combinations (0.5-2.5 wt%) in SPEEK with different DS amounts (65-73%). The optimized conditions to achieve the highest performance of PEMFCs were determined to be 1.8 wt% of nanoparticle incorporation in SPEEK with a DS of 69%. The nanocomposite membranes displayed the highest proton conductivity of 0.091 S cm(-1) at 80 degrees C, which is 31.87% higher than that of a pristine SPEEK membrane. The optimized membrane has been investigated in detail and reached a peak power density of 0.44 W cm(-2) at 80 degrees C. The novel SPEEK-BZY10 nanocomposite membranes with well-defined proton transport channels can be considered as potential alternative materials for PEMFCs.
引用
收藏
页码:16232 / 16245
页数:14
相关论文
共 50 条
  • [41] Minichannels in polymer electrolyte membrane fuel cells
    Trabold, TA
    HEAT TRANSFER ENGINEERING, 2005, 26 (03) : 3 - 12
  • [42] Polymer electrolyte membrane technology for fuel cells
    Rajendran, RG
    MRS BULLETIN, 2005, 30 (08) : 587 - 590
  • [43] Electrocatalysts for polymer electrolyte membrane fuel cells
    Song, Yujiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [44] Polymer Electrolyte Membrane Technology for Fuel Cells
    Raj G. Rajendran
    MRS Bulletin, 2005, 30 : 587 - 590
  • [45] New polymer bipolar plates for polymer electrolyte membrane fuel cells:: Synthesis and characterization
    Del Río, C
    Ojeda, MC
    Acosta, JL
    Escudero, MJ
    Hontañón, E
    Daza, L
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 83 (13) : 2817 - 2822
  • [46] Nafion/Analcime and Nafion/Faujasite composite membranes for polymer electrolyte membrane fuel cells
    Kongkachuichay, Paisan
    Pimprom, Siraprapa
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2010, 88 (4A): : 496 - 500
  • [47] A Review of Recent Chitosan Anion Exchange Membranes for Polymer Electrolyte Membrane Fuel Cells
    Vijayakumar, Vijayalekshmi
    Nam, Sang Yong
    MEMBRANES, 2022, 12 (12)
  • [48] Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells
    Fei, Mingming
    Lin, Ruizhi
    Deng, Yuming
    Xian, Hongxi
    Bian, Renji
    Zhang, Xiaole
    Cheng, Jigui
    Xu, Chenxi
    Cai, Dongyu
    NANOTECHNOLOGY, 2018, 29 (03)
  • [49] New approach for the evaluation of membranes transport properties for polymer electrolyte membrane fuel cells
    Brunetti, Adele
    Fontananova, Enrica
    Donnadio, Anna
    Casciola, Mario
    Di Vona, Maria Luisa
    Sgreccia, Emanuela
    Drioli, Enrico
    Barbieri, Giuseppe
    JOURNAL OF POWER SOURCES, 2012, 205 : 222 - 230
  • [50] A review of polymer-nanocomposite electrolyte membranes for fuel cell application
    Kim, Deuk Ju
    Jo, Min Jae
    Nam, Sang Yong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 21 : 36 - 52