Calculation of nonadiabatic couplings with restricted open-shell Kohn-Sham density-functional theory

被引:18
|
作者
Billeter, Salomon R. [1 ]
Egli, Daniel [1 ]
机构
[1] IBM Res, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
来源
JOURNAL OF CHEMICAL PHYSICS | 2006年 / 125卷 / 22期
关键词
D O I
10.1063/1.2360261
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper generalizes the recently proposed approaches for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) based on a Slater transition-state density to transitions such as singlet-singlet excitations, where a single-determinant ansatz is insufficient. The proposed approach is based on restricted open-shell Frank [J. Chem. Phys. 108, 4060 (1998)] theory used to describe a spin-adapted Slater transition state. To treat the dependence of electron-electron interactions on the nuclear positions, variational linear-response density-functional perturbation theory is generalized to reference states with an orbital-dependent Kohn-Sham Hamiltonian and nontrivial occupation patterns. The methods proposed in this paper are not limited to the calculation of derivative coupling vectors, but can also be used for the calculation of other transition matrix elements. Moreover, they can be used to calculate the linear response of open-shell systems to arbitrary external perturbations in DFT. (c) 2006 American Institute of Physics.
引用
收藏
页数:18
相关论文
共 50 条