Synchronization Bound for Networks of Nonlinear Oscillators

被引:0
|
作者
Davison, Elizabeth N. [1 ]
Dey, Biswadip [1 ]
Leonard, Naomi Ehrich [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Complex Networked Systems; Nonlinear Oscillators; Synchronization; Lyapunov Analysis; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Investigation of synchronization phenomena in networks of coupled nonlinear oscillators plays a pivotal role in understanding the behavior of biological and mechanical systems with oscillatory properties. We derive a general sufficient condition for synchronization of a network of nonlinear oscillators using a nonsmooth Lyapunov function, and we obtain conditions under which synchronization is guaranteed for a network of Fitzhugh-Nagumo (FN) oscillators in biologically relevant model parameter regimes. We incorporate two types of heterogeneity into our study of FN oscillators: 1) the network structure is arbitrary and 2) the oscillators have non-identical external inputs. Understanding the effects of heterogeneities on synchronization of oscillators with inputs provides a promising step toward control of key aspects of networked oscillatory systems.
引用
收藏
页码:1110 / 1115
页数:6
相关论文
共 50 条
  • [21] Synchronization of Kuramoto oscillators in dense networks
    Lu, Jianfeng
    Steinerberger, Stefan
    NONLINEARITY, 2020, 33 (11) : 5905 - 5918
  • [22] Driven synchronization in random networks of oscillators
    Hindes, Jason
    Myers, Christopher R.
    CHAOS, 2015, 25 (07)
  • [23] Synchronization in networks of coupled oscillators with mismatches
    Nazerian, Amirhossei
    Panahi, Shirin
    Sorrentino, Francesco
    EPL, 2023, 143 (01)
  • [24] Synchronization in starlike networks of phase oscillators
    Xu, Can
    Gao, Jian
    Boccaletti, Stefano
    Zheng, Zhigang
    Guan, Shuguang
    PHYSICAL REVIEW E, 2019, 100 (01)
  • [25] Synchronization in networks of limit cycle oscillators
    Tass, P
    Haken, H
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 100 (02): : 303 - 320
  • [26] Erosion of synchronization in networks of coupled oscillators
    Skardal, Per Sebastian
    Taylor, Dane
    Sun, Jie
    Arenas, Alex
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [27] Cluster Synchronization in Networks of Kuramoto Oscillators
    Favaretto, Chiara
    Cenedese, Angelo
    Pasqualetti, Fabio
    IFAC PAPERSONLINE, 2017, 50 (01): : 2433 - 2438
  • [28] On the synchronization region in networks of coupled oscillators
    Checco, P
    Kocarev, L
    Maggio, GM
    Biey, M
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 4, PROCEEDINGS, 2004, : 800 - 803
  • [29] Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators
    Glyzin, S. D.
    Kolesov, A. Yu.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 212 (02) : 1073 - 1091
  • [30] Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators
    S. D. Glyzin
    A. Yu. Kolesov
    Theoretical and Mathematical Physics, 2022, 212 : 1073 - 1091