Memory Effects in Quantum Metrology

被引:22
|
作者
Yang, Yuxiang [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.123.110501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum metrology concerns estimating a parameter from multiple identical uses of a quantum channel. We extend quantum metrology beyond this standard setting and consider the estimation of a physical process with quantum memory, here referred to as a parametrized quantum comb. We present a theoretic framework of metrology of quantum combs, and derive a general upper bound of the comb quantum Fisher information. The bound can be operationally interpreted as the quantum Fisher information of a memoryless quantum channel times a dimensional factor. We then show an example where the bound can be attained up to a factor of 4. With the example and the bound, we show that memory in quantum sensors plays an even more crucial role in the estimation of combs than in the standard setting of quantum metrology.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum metrology with quantum-chaotic sensors
    Fiderer, Lukas J.
    Braun, Daniel
    NATURE COMMUNICATIONS, 2018, 9
  • [42] Development on quantum metrology with quantum Fisher information
    Ren Zhi-Hong
    Li Yan
    Li Yan-Na
    Li Wei-Dong
    ACTA PHYSICA SINICA, 2019, 68 (04)
  • [43] Quantum Fisher information width in quantum metrology
    Bo Liu
    GuoLong Li
    YanMing Che
    Jie Chen
    XiaoGuang Wang
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [44] Quantum metrology with full and fast quantum control
    Sekatski, Pavel
    Skotiniotis, Michalis
    Kolodynski, Jan
    Duer, Wolfgang
    QUANTUM, 2017, 1
  • [45] Quantum metrology with quantum-chaotic sensors
    Lukas J. Fiderer
    Daniel Braun
    Nature Communications, 9
  • [46] Quantum metrology with delegated tasks
    Shettell, Nathan
    Markham, Damian
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [47] Quantum metrology with entangled photons
    Sergienko, AV
    RECENT ADVANCES IN METROLOGY AND FUNDAMENTAL CONSTANTS, 2001, 146 : 715 - 746
  • [48] Estimation of gradients in quantum metrology
    Altenburg, Sanah
    Oszmaniec, Michal
    Wolk, Sabine
    Guhne, Otfried
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [49] Quantum metrology in correlated environments
    Xie, Dong
    Wang, An Min
    PHYSICS LETTERS A, 2014, 378 (30-31) : 2079 - 2084
  • [50] Quantum metrology with imperfect measurements
    Len, Yink Loong
    Gefen, Tuvia
    Retzker, Alex
    Kolodynski, Jan
    NATURE COMMUNICATIONS, 2022, 13 (01)