LSCD: Low-rank and sparse cross-domain recommendation

被引:28
|
作者
Huang, Ling [1 ,2 ]
Zhao, Zhi-Lin [1 ]
Wang, Chang-Dong [1 ,2 ]
Huang, Dong [3 ]
Chao, Hong-Yang [1 ]
机构
[1] Sun Yat Sen Univ, Guangzhou Higher Educ Mega Ctr, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Computat Sci, Guangzhou, Guangdong, Peoples R China
[3] South China Agr Univ, Coll Math & Informat, Guangzhou, Guangdong, Peoples R China
关键词
Recommendation; Cross-domain; Low-rank; Sparse; MODEL;
D O I
10.1016/j.neucom.2019.07.091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the ability of addressing the data sparsity and cold-start problems, Cross-Domain Collaborative Filtering (CDCF) has received a significant amount of attention. Despite significant success, most of the existing CDCF algorithms assume that all the domains are correlated, which is however not always guaranteed in practice. In this paper, we propose a novel CDCF algorithm termed Low-rank and Sparse Cross-Domain (LSCD) recommendation algorithm. Different from most of the CDCF algorithms, LSCD extracts a user and an item latent feature matrix for each domain respectively, rather than tri-factorizing the rating matrix of each domain into three low dimensional matrices. In order to simultaneously improve the performance of recommendations among correlated domains by transferring knowledge and among uncorrelated domains by differentiating features in different domains, the features of users are separated into shared and domain-specific parts adaptively. Specifically, a low-rank matrix is used to capture the shared features of each user across different domains and a sparse matrix is used to characterize the discriminative features in each specific domain. Extensive experiments on two real-world datasets have been conducted to confirm that the proposed algorithm transfers knowledge in a better way to improve the quality of recommendation and outperforms state-of-the-art recommendation algorithms. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 96
页数:11
相关论文
共 50 条
  • [21] Cross-Domain Recommendation with Adversarial Examples
    Yan, Haoran
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 573 - 589
  • [22] Cross-Domain Recommendation Method in Tourism
    QingQi
    JianCao
    Tan, Yudong
    Xiao, Quanwu
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 106 - 112
  • [23] Contrastive Cross-domain Recommendation in Matching
    Xie, Ruobing
    Liu, Qi
    Wang, Liangdong
    Liu, Shukai
    Zhang, Bo
    Lin, Leyu
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4226 - 4236
  • [24] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [25] Denoising by low-rank and sparse representations
    Nejati, Mansour
    Samavi, Shadrokh
    Derksen, Harm
    Najarian, Kayvan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 36 : 28 - 39
  • [26] Sparse and Low-Rank Matrix Decompositions
    Chandrasekaran, Venkat
    Sanghavi, Sujay
    Parrilo, Pablo A.
    Willsky, Alan S.
    2009 47TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1 AND 2, 2009, : 962 - +
  • [27] Repairing Sparse Low-Rank Texture
    Liang, Xiao
    Ren, Xiang
    Zhang, Zhengdong
    Ma, Yi
    COMPUTER VISION - ECCV 2012, PT V, 2012, 7576 : 482 - 495
  • [28] Learning Nonlocal Sparse and Low-Rank Models for Image Compressive Sensing: Nonlocal sparse and low-rank modeling
    Zha, Zhiyuan
    Wen, Bihan
    Yuan, Xin
    Ravishankar, Saiprasad
    Zhou, Jiantao
    Zhu, Ce
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (01) : 32 - 44
  • [29] CoNet: Collaborative Cross Networks for Cross-Domain Recommendation
    Hu, Guangneng
    Zhang, Yu
    Yang, Qiang
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 667 - 676
  • [30] Triple Sequence Learning for Cross-domain Recommendation
    Ma, Haokai
    Xie, Ruobing
    Meng, Lei
    Chen, Xin
    Zhang, Xu
    Lin, Leyu
    Zhou, Jie
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (04)