Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks

被引:158
|
作者
Meng, Min [1 ,2 ]
Chua, Yiting Jacqueline [2 ]
Wouterson, Erwin [2 ]
Ong, Chin Peng Kelvin [2 ]
机构
[1] Guangdong Univ Technol, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China
[2] Singapore Polytech, Sch Mech & Aeronaut Engn, Singapore, Singapore
关键词
Ultrasonic signal classification; Feature extraction; Wavelet transform; Deep convolutional neural networks; FEATURE-EXTRACTION; FAULT-DIAGNOSIS;
D O I
10.1016/j.neucom.2016.11.066
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated ultrasonic signal classification systems are finding increasing use in many applications for the recognition of large volumes of inspection signals. Wavelet transform is a well-known signal processing technique in fault signal diagnosis system. Most of the proposed approaches have mainly used low-level handcraft features based on wavelet transform to encode the information for different defect classes. In this paper, we proposed a deep learning based framework to classify ultrasonic signals from carbon fiber reinforced polymer (CFRP) specimens with void and delamination. In our proposed algorithm, deep Convolutional Neural Networks (CNNs) are used to learn a compact and effective representation for each signal from wavelet coefficients. To yield superior results, we proposed to use a linear SVM top layer in the training process of signal classification task. The experimental results demonstrated the excellent performance of our proposed algorithm against the classical classifier with manually generated attributes. In addition, a post processing scheme is developed to interpret the classifier outputs with a C-scan imaging process and visualize the locations of defects using a 3D model representation. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 50 条
  • [21] Covert photo classification by deep convolutional neural networks
    Haiqiang Zuo
    Haitao Lang
    Erik Blasch
    Haibin Ling
    Machine Vision and Applications, 2017, 28 : 623 - 634
  • [22] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [23] Deep Convolutional Neural Networks for Diabetic Retinopathy Classification
    Lian, Chunyan
    Liang, Yixiong
    Kang, Rui
    Xiang, Yao
    ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 68 - 72
  • [24] Pulsar candidate classification with deep convolutional neural networks
    Wang, Yuan-Chao
    Li, Ming-Tao
    Pan, Zhi-Chen
    Zheng, Jian-Hua
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2019, 19 (09)
  • [25] Galaxy morphology classification with deep convolutional neural networks
    Zhu, Xiao-Pan
    Dai, Jia-Ming
    Bian, Chun-Jiang
    Chen, Yu
    Chen, Shi
    Hu, Chen
    ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (04)
  • [26] Pulsar candidate classification with deep convolutional neural networks
    Yuan-Chao Wang
    Ming-Tao Li
    Zhi-Chen Pan
    Jian-Hua Zheng
    Research in Astronomy and Astrophysics, 2019, 19 (09) : 119 - 128
  • [27] Skin Cancer Classification with Deep Convolutional Neural Networks
    Chen, Mingang
    Chen, Wenjie
    Chen, Wei
    Cai, Lizhi
    Chai, Gang
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (07) : 1707 - 1713
  • [28] Flower classification using deep convolutional neural networks
    Hiary, Hazem
    Saadeh, Heba
    Saadeh, Maha
    Yaqub, Mohammad
    IET COMPUTER VISION, 2018, 12 (06) : 855 - 862
  • [29] Evolving Deep Convolutional Neural Networks for Image Classification
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 394 - 407
  • [30] BREAST DENSITY CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Wu, Nan
    Geras, Krzysztof J.
    Shen, Yiqiu
    Su, Jingyi
    Kim, Gene
    Kim, Eric
    Wolfson, Stacey
    Moy, Linda
    Cho, Kyunghyun
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6682 - 6686