Hydrokinetic piezoelectric energy harvesting by wake induced vibration

被引:44
|
作者
Zhao, Daoli [1 ]
Zhou, Jie [1 ]
Tan, Ting [2 ]
Yan, Zhimiao [3 ]
Sun, Weipeng [1 ]
Yin, Junlian [2 ]
Zhang, Wenming [2 ]
机构
[1] Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg, Xian 710048, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
关键词
Wake-induced vibration; Hydrokinetic piezoelectric energy harvester; Circulating water channel; Flow pattern; Reattachment;
D O I
10.1016/j.energy.2020.119722
中图分类号
O414.1 [热力学];
学科分类号
摘要
Piezoelectric energy harvesters capture various kinetic energy to power wireless sensors. A new hydrokinetic piezoelectric energy harvester using wake-induced vibration (WIV) is proposed in this paper. The mathematical model of the hydrokinetic energy harvester is established to consider the effect for different velocity regions. Circulating water-channel experiment is carried out to exam the performance of the harvester. The experimental results show that the model can predict the output power appropriately. Frequency analysis indicates that the performances in VIV region and WIV region are dominated by the wake vortex frequency and the natural frequency respectively. The flow pattern changes greatly under different spacings which are divided into extended-body, reattachment and co-shedding regions. The maximum output power of the harvester locates in the reattachment region. The maximum experimental power densities for the inverted D-shaped, circular and D-shaped cylinders are 570.3W/m(3), 596.4W/m(3), 1074W/m(3), respectively. They are 43.2, 25.3, 31 times of that without wake interference. The corresponding optimal experimental spacing ratios are 5, 2.6 and 2, respectively. Compared with the case without wake interference, the output power of the hydrokinetic piezoelectric energy harvester using WIV is significantly improved. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Enhancement of piezoelectric vibration energy harvesting with auxetic boosters
    Eghbali, Pejman
    Younesian, Davood
    Farhangdoust, Saman
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (02) : 1179 - 1190
  • [42] Soft and Hard Piezoelectric Ceramics for Vibration Energy Harvesting
    Yan, Xiaodong
    Zheng, Mupeng
    Zhu, Mankang
    Hou, Yudong
    CRYSTALS, 2020, 10 (10): : 1 - 9
  • [43] Piezoelectric buckled beams for random vibration energy harvesting
    Cottone, F.
    Gammaitoni, L.
    Vocca, H.
    Ferrari, M.
    Ferrari, V.
    SMART MATERIALS AND STRUCTURES, 2012, 21 (03)
  • [44] Piezoelectric Vibration Energy Harvesting Device Combined with Damper
    Yang, Hung-I Lu Chi-Ren
    Cengand, Shih-Rong
    Fuh, Yiin-Kuen
    SMART SCIENCE, 2014, 2 (02): : 96 - 100
  • [45] Energy harvesting of beam vibration based on piezoelectric stacks
    Zhang, Liufeng
    Xu, Xueping
    Han, Qinkai
    Qin, Zhaoye
    Chu, Fulei
    SMART MATERIALS AND STRUCTURES, 2019, 28 (12)
  • [46] Vibration energy harvesting with a clamped piezoelectric circular diaphragm
    Chen, Xu-rui
    Yang, Tong-qing
    Wang, Wei
    Yao, Xi
    CERAMICS INTERNATIONAL, 2012, 38 : S271 - S274
  • [47] Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration
    Wang, D. W.
    Mo, J. L.
    Wang, X. F.
    Ouyang, H.
    Zhou, Z. R.
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1134 - 1149
  • [48] Harvesting flow-induced vibration using a highly flexible piezoelectric energy device
    Mutsuda, Hidemi
    Tanaka, Yoshikazu
    Patel, Rupesh
    Doi, Yasuaki
    APPLIED OCEAN RESEARCH, 2017, 68 : 39 - 52
  • [49] Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration
    Cao D.
    Ma H.
    Zhang W.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (04): : 1148 - 1155
  • [50] Vibration induced refrigeration and energy harvesting using piezoelectric materials: a finite element study
    Kumar, Anuruddh
    Kumar, Rajeev
    Jain, Satish Chandra
    Vaish, Rahul
    RSC ADVANCES, 2019, 9 (07) : 3918 - 3926