Automated Synthesis of Low-rank Control Systems from sc-LTL Specifications using Tensor-Train Decompositions

被引:0
|
作者
Alora, John Irvin [1 ]
Gorodetsky, Alex [1 ]
Karaman, Sertac [1 ]
Marzouk, Youssef [1 ]
Lowry, Nathan [2 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Draper Lab, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Correct-by-design automated construction of control systems has attracted a tremendous amount of attention. However, most existing algorithms for automated construction suffer from the curse of dimensionality, i.e., their run time scales exponentially with increasing dimensionality of the state space. As a result, typically, systems with only a few degrees of freedom are considered. In this paper, we propose a novel algorithm based on the tensor-train decomposition that solves stochastic optimal control problems with syntactically co-safe linear temporal logic specifications. We show that, under certain conditions, the run time of the proposed algorithm scales polynomially with the dimensionality of the state space and the rank of the optimal cost-to-go function. We demonstrate the algorithm in a six-dimensional problem instance involving a simple airplane model. In this example, the proposed algorithm provides up to four orders of computational savings when compared to the standard value iteration algorithm.
引用
收藏
页码:1131 / 1138
页数:8
相关论文
共 23 条
  • [1] Nonnegative Tensor-Train Low-Rank Approximations of the Smoluchowski Coagulation Equation
    Manzini, Gianmarco
    Skau, Erik
    Truong, Duc P.
    Vangara, Raviteja
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 342 - 350
  • [2] Auto-weighted robust low-rank tensor completion via tensor-train
    Chen, Chuan
    Wu, Zhe-Bin
    Chen, Zi-Tai
    Zheng, Zi-Bin
    Zhang, Xiong-Jun
    INFORMATION SCIENCES, 2021, 567 : 100 - 115
  • [3] Graph Regularized Low-Rank Tensor-Train for Robust Principal Component Analysis
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1152 - 1156
  • [4] AUTOMATIC DIFFERENTIATION FOR RIEMANNIAN OPTIMIZATION ON LOW-RANK MATRIX AND TENSOR-TRAIN MANIFOLDS
    NOVIKOV, A. L. E. X. A. N. D. E. R.
    RAKHUBA, M. A. X. I. M.
    OSELEDETS, I. V. A. N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A843 - A869
  • [5] Subspace Methods with Local Refinements for Eigenvalue Computation Using Low-Rank Tensor-Train Format
    Zhang, Junyu
    Wen, Zaiwen
    Zhang, Yin
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 478 - 499
  • [6] Challenging the Curse of Dimensionality in Multidimensional Numerical Integration by Using a Low-Rank Tensor-Train Format
    Alexandrov, Boian
    Manzini, Gianmarco
    Skau, Erik W.
    Truong, Phan Minh Duc
    Vuchov, Radoslav G.
    MATHEMATICS, 2023, 11 (03)
  • [7] Subspace Methods with Local Refinements for Eigenvalue Computation Using Low-Rank Tensor-Train Format
    Junyu Zhang
    Zaiwen Wen
    Yin Zhang
    Journal of Scientific Computing, 2017, 70 : 478 - 499
  • [8] Tensor Denoising Using Low-Rank Tensor Train Decomposition
    Gong, Xiao
    Chen, Wei
    Chen, Jie
    Ai, Bo
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1685 - 1689
  • [9] REGULARIZED COMPUTATION OF APPROXIMATE PSEUDOINVERSE OF LARGE MATRICES USING LOW-RANK TENSOR TRAIN DECOMPOSITIONS
    Lee, Namgil
    Cichocki, Andrzej
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (02) : 598 - 623
  • [10] Tensor Regression Using Low-Rank and Sparse Tucker Decompositions
    Ahmed, Talal
    Raja, Haroon
    Bajwa, Waheed U.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 944 - 966