Nonnegative Tensor-Train Low-Rank Approximations of the Smoluchowski Coagulation Equation

被引:2
|
作者
Manzini, Gianmarco [1 ]
Skau, Erik [2 ]
Truong, Duc P. [2 ]
Vangara, Raviteja [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Comp Computat & Stat Div, Los Alamos, NM 87545 USA
关键词
Smoluchowski equation; Multidimensional problem; Nonnegative tensor factorization; Low-order tensor decomposition; Tensor-train method; MONTE-CARLO; ALGORITHMS; SIMULATION; MATRIX;
D O I
10.1007/978-3-030-97549-4_39
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a finite difference approximation of the nonnegative solutions of the two dimensional Smoluchowski equation by a nonnegative low-order tensor factorization. Two different implementations are compared. The first one is based on a full tensor representation of the numerical solution and the coagulation kernel. The second one is based on a tensor-train decomposition of solution and kernel. The convergence of the numerical solution to the analytical one is investigated for the Smoluchowski problem with the constant kernel and the influence of the nonnegative decomposition on the solution accuracy is investigated.
引用
收藏
页码:342 / 350
页数:9
相关论文
共 50 条
  • [1] Nonnegative tensor train for the multicomponent Smoluchowski equation
    Matveev, Segey
    Tretyak, Ilya
    [J]. Computational and Applied Mathematics, 2025, 44 (01)
  • [2] Auto-weighted robust low-rank tensor completion via tensor-train
    Chen, Chuan
    Wu, Zhe-Bin
    Chen, Zi-Tai
    Zheng, Zi-Bin
    Zhang, Xiong-Jun
    [J]. INFORMATION SCIENCES, 2021, 567 : 100 - 115
  • [3] Image Completion with Filtered Low-Rank Tensor Train Approximations
    Zdunek, Rafal
    Fonal, Krzysztof
    Sadowski, Tomasz
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT II, 2019, 11507 : 235 - 245
  • [4] AUTOMATIC DIFFERENTIATION FOR RIEMANNIAN OPTIMIZATION ON LOW-RANK MATRIX AND TENSOR-TRAIN MANIFOLDS
    NOVIKOV, A. L. E. X. A. N. D. E. R.
    RAKHUBA, M. A. X. I. M.
    OSELEDETS, I. V. A. N.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A843 - A869
  • [5] Graph Regularized Low-Rank Tensor-Train for Robust Principal Component Analysis
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1152 - 1156
  • [6] Subspace Methods with Local Refinements for Eigenvalue Computation Using Low-Rank Tensor-Train Format
    Zhang, Junyu
    Wen, Zaiwen
    Zhang, Yin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 478 - 499
  • [7] Challenging the Curse of Dimensionality in Multidimensional Numerical Integration by Using a Low-Rank Tensor-Train Format
    Alexandrov, Boian
    Manzini, Gianmarco
    Skau, Erik W.
    Truong, Phan Minh Duc
    Vuchov, Radoslav G.
    [J]. MATHEMATICS, 2023, 11 (03)
  • [8] Subspace Methods with Local Refinements for Eigenvalue Computation Using Low-Rank Tensor-Train Format
    Junyu Zhang
    Zaiwen Wen
    Yin Zhang
    [J]. Journal of Scientific Computing, 2017, 70 : 478 - 499
  • [9] Tensor train versus Monte Carlo for the multicomponent Smoluchowski coagulation equation
    Sergey, Matveev A.
    Dmitry, Zheltkov A.
    Eugene, Tyrtyshnikov E.
    Alexander, Smirnov P.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 316 : 164 - 179
  • [10] Low-rank Nonnegative Tensor Decomposition in Hyperbolic Space
    Hui, Bo
    Ku, Wei-Shinn
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 646 - 654