PHASE FIELD MODEL FOR MODE III CRACK GROWTH IN TWO DIMENSIONAL ELASTICITY

被引:1
|
作者
Takaishi, Takeshi [1 ]
Kimura, Masato [2 ]
机构
[1] Hiroshima Kokusai Gakuin Univ, Fac Informat Design, Hiroshima 7390321, Japan
[2] Kyushu Univ, Fac Math, Higashi Ku, Fukuoka 8128581, Japan
关键词
crack growth; phase field model; numerical simulation; BRITTLE-FRACTURE;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regulaxization parameter epsilon > 0 and we approximate the Francfort-Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.
引用
收藏
页码:605 / 614
页数:10
相关论文
共 50 条
  • [41] Two Dynamic Propagation Problems of Mode III Interface Crack
    Lue, Nian-chun
    Cheng, Yun-hong
    Wang, Yun-tao
    ADVANCES IN KEY ENGINEERING MATERIALS, 2011, 214 : 477 - +
  • [42] Mode III crack in the piezoelectric layer of two dissimilar materials
    Liu, JX
    Liu, YL
    Wang, B
    Du, SY
    FRACTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2: PT 1: FRACTURE MECHANICS OF MATERIALS; PT 2: BEHAVIOR OF MATERIALS AND STRUCTURE, 1998, 145-9 : 1167 - 1171
  • [43] Phase Field Modeling of Crack Growth with Viscoplasticity
    Shi, Qianyu
    Yu, Hongjun
    Wang, Xiangyuhan
    Huang, Kai
    Han, Jian
    CRYSTALS, 2023, 13 (05)
  • [44] Phase field modeling of fracture and crack growth
    Staroselsky, A.
    Acharya, R.
    Cassenti, B.
    ENGINEERING FRACTURE MECHANICS, 2019, 205 : 268 - 284
  • [45] An assessment of the phase field formulation for crack growth
    Klinsmann, Markus
    Rosato, Daniele
    Kamlah, Marc
    McMeeking, Robert M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 294 : 313 - 330
  • [46] Homoepitaxial growth of ZnO by metalorganic vapor phase epitaxy in two-dimensional growth mode
    Heinze, S.
    Krtschil, A.
    Blaesing, J.
    Hempel, T.
    Veit, P.
    Dadgar, A.
    Christen, J.
    Krost, A.
    JOURNAL OF CRYSTAL GROWTH, 2007, 308 (01) : 170 - 175
  • [47] Elasticity versus phase field driven motion in the phase field crystal model
    Acharya, Amit
    Angheluta, Luiza
    Vinals, Jorge
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2022, 30 (06)
  • [48] SLIDING MODE CRACK CLOSURE AND MODE-III FATIGUE CRACK-GROWTH IN MILD-STEEL
    TSCHEGG, EK
    ACTA METALLURGICA, 1983, 31 (09): : 1323 - 1330
  • [49] Plane elasticity problem of two-dimensional octagonal quasicrystals and crack problem
    Zhou, WM
    Fan, TY
    CHINESE PHYSICS, 2001, 10 (08): : 743 - 747
  • [50] The concept of representative crack elements for phase-field fracture: Anisotropic elasticity and thermo-elasticity
    Storm, J.
    Supriatna, D.
    Kaliske, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (05) : 779 - 805