Deformation theory of infinity algebras

被引:29
|
作者
Fialowski, A
Penkaya, M
机构
[1] Eotvos Lorand Univ, Dept Appl Anal, H-1117 Budapest, Hungary
[2] Univ Wisconsin, Dept Math, Eau Claire, WI 54702 USA
基金
匈牙利科学研究基金会;
关键词
differential graded Lie algebra; infinity algebra; Harrison cohomology; infinitesimal deformation; versal deformation;
D O I
10.1016/S0021-8693(02)00067-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work explores the deformation theory of algebraic structures in a very general setting. These structures include associative algebras, Lie algebras, and the infinity versions of these structures, the strongly homotopy associative and Lie algebras. In all these cases the algebraic structure is determined by an element of a certain graded Lie algebra which determines a differential on the Lie algebra. We work out the deformation theory in terms of the Lie algebra of coderivations of an appropriate coalgebra structure and construct a universal infinitesimal deformation as well as a miniversal formal deformation. By working at this level of generality, the main ideas involved in deformation theory stand out more clearly. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:59 / 88
页数:30
相关论文
共 50 条
  • [21] THE COBAR RESOLUTION AND A RESTRICTED DEFORMATION-THEORY FOR DRINFELD ALGEBRAS
    SHNIDER, S
    STERNBERG, S
    JOURNAL OF ALGEBRA, 1994, 169 (02) : 343 - 366
  • [22] On a Deformation Theory of Finite Dimensional Modules Over Repetitive Algebras
    Fonce-Camacho, Adriana
    Giraldo, Hernan
    Rizzo, Pedro
    Velez-Marulanda, Jose A.
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (01) : 1 - 22
  • [23] On a Deformation Theory of Finite Dimensional Modules Over Repetitive Algebras
    Adriana Fonce-Camacho
    Hernán Giraldo
    Pedro Rizzo
    José A. Vélez-Marulanda
    Algebras and Representation Theory, 2023, 26 : 1 - 22
  • [24] HOMOTOPY UNITS IN A-INFINITY ALGEBRAS
    Muro, Fernando
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (03) : 2145 - 2184
  • [25] Representations of Derived A-infinity Algebras
    Roman, Camil I. Aponte
    Livernet, Muriel
    Robertson, Marcy
    Whitehouse, Sarah
    Ziegenhagen, Stephanie
    WOMEN IN TOPOLOGY: COLLABORATIONS IN HOMOTOPY THEORY, 2015, 641 : 1 - 27
  • [26] Infinity-enhancing of Leibniz algebras
    Sylvain Lavau
    Jakob Palmkvist
    Letters in Mathematical Physics, 2020, 110 : 3121 - 3152
  • [27] ON THE INFINITY CATEGORY OF HOMOTOPY LEIBNIZ ALGEBRAS
    Khudaverdyan, David
    Poncin, Norbert
    Qiu, Jian
    THEORY AND APPLICATIONS OF CATEGORIES, 2014, 29 : 332 - 370
  • [28] APPROACHING INFINITY IN C-ALGEBRAS
    AKEMANN, CA
    ANDERSON, J
    PEDERSEN, GK
    JOURNAL OF OPERATOR THEORY, 1989, 21 (02) : 255 - 271
  • [29] Examples of miniversal deformations of infinity algebras
    Fialowski, Alice
    Penkava, Michael
    FORUM MATHEMATICUM, 2007, 19 (03) : 463 - 486
  • [30] Infinity-enhancing of Leibniz algebras
    Lavau, Sylvain
    Palmkvist, Jakob
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (11) : 3121 - 3152