Eye State Recognizer Using Light-Weight Architecture for Drowsiness Warning

被引:2
|
作者
Duy-Linh Nguyen [1 ]
Putro, Muhamad Dwisnanto [1 ]
Kang-Hyun Jo [1 ]
机构
[1] Univ Ulsan, Sch Elect Engn, Ulsan, South Korea
来源
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021 | 2021年 / 12672卷
基金
新加坡国家研究基金会;
关键词
Convolutional neural network (CNN); Deep learning; Drowsiness warning; Eye detection; Eye classification; Eye state recognizer; ROBUST;
D O I
10.1007/978-3-030-73280-6_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The eye are a very important organ in the human body. The eye area and eyes contain lots of useful information about human interaction with the environment. Many studies have relied on eye region analyzes to build the medical care, surveillance, interaction, security, and warning systems. This paper focuses on extracting eye region features to detect eye state using the light-weight convolutional neural networks with two stages: eye detection and classification. This method can apply on simple drowsiness warning system and perform well on Intel Core I7-4770 CPU @ 3.40 GHz (Personal Computer - PC) and on quad-core ARM Cortex-A57 CPU (Jetson Nano device) with 19.04 FPS and 17.20 FPS (frames per second), respectively.
引用
收藏
页码:518 / 530
页数:13
相关论文
共 50 条
  • [31] A Light-Weight Deep Learning-Based Architecture for Sign Language Classification
    Nareshkumar, M. Daniel
    Jaison, B.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (03): : 3501 - 3515
  • [32] A Light-Weight Secure Key Setup and Signaling Architecture for Wireless Mesh Networks
    Kandikattu, Ramanarayana
    Jacob, Lillykutty
    IETE TECHNICAL REVIEW, 2008, 25 (04) : 168 - 174
  • [33] Light-weight and Scalable Hierarchical-MVC Architecture for Cloud Web Applications
    Ma, Meng
    Yang, Jun
    Wang, Ping
    Liu, Weijie
    Zhang, Jingzhuo
    2019 6TH IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND CLOUD COMPUTING (IEEE CSCLOUD 2019) / 2019 5TH IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND SCALABLE CLOUD (IEEE EDGECOM 2019), 2019, : 40 - 45
  • [34] Light-Weight Document Image Cleanup Using Perceptual Loss
    Dey, Soumyadeep
    Jawanpuria, Pratik
    DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2021, PT III, 2021, 12823 : 238 - 253
  • [35] An experimental investigation on light-weight concrete blocks using vermiculite
    Kumar, K. Naveen
    Vijayan, D. S.
    Divahar, R.
    Abirami, R.
    Nivetha, C.
    MATERIALS TODAY-PROCEEDINGS, 2020, 22 : 987 - 991
  • [36] Light-weight Recommendation System using Graph Neural Networks
    Safar, Seema
    Jose, Babita Roslind
    Mathew, Jimson
    Santhanakrishnan, T.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [37] A Light-Weight Cropland Mapping Model Using Satellite Imagery
    Hussain, Maya Haj
    Abuhani, Diaa Addeen
    Khan, Jowaria
    ElMohandes, Mohamed
    Zualkernan, Imran
    Ali, Tarig
    SENSORS, 2023, 23 (15)
  • [38] Creating portals using light-weight ontologies: a transformational approach
    Sabou, M
    STAIRS 2002, PROCEEDINGS, 2002, 78 : 121 - 122
  • [39] Robotic Grasp Detection Using Light-weight CNN Model
    Jiang, Yang
    Li, Xulong
    Yu, Minghao
    Bai, Zhongyu
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1034 - 1038
  • [40] Microscopic aspects of a light-weight geomaterial using fly ashes
    Yasuhara, K
    Murakami, S
    Kanazawa, H
    Iikubo, T
    Yoshino, H
    Horiuchi, S
    COASTAL GEOTECHNICAL ENGINEERING IN PRACTICE, VOL 1, 2000, : 771 - 776