Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting

被引:38
|
作者
Fang, Yuanxing [1 ]
Lee, Wei Cheat [1 ]
Canciani, Giacomo E. [1 ]
Draper, Thomas C. [1 ]
Al-Bawi, Zainab F. [1 ]
Bedi, Jasbir S. [2 ]
Perry, Christopher C. [3 ]
Chen, Qiao [1 ]
机构
[1] Univ Sussex, Dept Chem, Sch Life Sci, Brighton BN1 9QJ, E Sussex, England
[2] Guru Angad Dev Vet & Anim Sci Univ, Sch Publ Hlth & Zoonoses, Ludhiana 141004, Punjab, India
[3] Loma Linda Univ, Sch Med, Div Biochem, Loma Linda, CA 92350 USA
关键词
Electrophoretic deposition; Thickness; Electrospinning; WO3; nanofiber; Photoelectrochemical water splitting; TUNGSTEN TRIOXIDE FILMS; PHOTOELECTROCHEMICAL PROPERTY; HYDROGEN-PRODUCTION; METHANOL OXIDATION; WET IMPREGNATION; CERAMIC COATINGS; GEL ROUTE; OXIDE; PERFORMANCE; PHOTOANODES;
D O I
10.1016/j.mseb.2015.09.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrophoretic deposition (EPD) of ground electrospun WO3 nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO3 nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 mu m. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条
  • [31] Interfacial engineering of CuWO4/WO3 thin films precisely fabricated by ultrasonic spray pyrolysis for improved solar water splitting
    Cao, Feng
    Sun, Yuhan
    Duan, Xiaoyu
    Li, Mengyang
    Chen, Biao
    Cao, Yang
    Liang, Qinghua
    El Nahrawy, Amany M.
    Qin, Gaowu
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (15) : 4550 - 4557
  • [32] Flame Synthesized Single Crystal Nanocolumn-Structured WO3 Thin Films for Photoelectrochemical Water Splitting
    Ding, Jin-Rui
    Kim, Kyo-Seon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (02) : 1578 - 1582
  • [33] Electrophoretic deposition (EPD)Of WO3 nanorods for electrochromic application
    Khoo, Eugene
    Lee, Pooi See
    Ma, Jan
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (05) : 1139 - 1144
  • [34] Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High-Temperature Annealing
    Jelinska, Aldona
    Bienkowski, Krzysztof
    Jadwiszczak, Michal
    Pisarek, Marcin
    Strawski, Marcin
    Kurzydlowski, Dominik
    Solarska, Renata
    Augustynski, Jan
    ACS CATALYSIS, 2018, 8 (11): : 10573 - 10580
  • [35] Influence of deposition temperature on electrochromic properties of sputtered WO3 thin films
    Wang, JQ
    Bell, JM
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1996, 43 (04) : 377 - 391
  • [36] Effects of deposition parameters on RF-sputtered WO3 thin films
    Zhu, Xiumei
    Qi, Hao
    Chen, Jiahao
    Su, Jiangbin
    He, Zuming
    Tang, Bin
    SURFACE INNOVATIONS, 2022, 11 (6-7) : 386 - 396
  • [37] Microstructure Investigation in Thin Films WO3 Produced by Pulsed Laser Deposition
    Kopia, Agnieszka
    ELECTRON MICROSCOPY XIV, 2012, 186 : 164 - 167
  • [38] Improving the hydrogen gas sensitivity of WO3 thin films by modifying the deposition angle and thickness of different promoter layers
    Amani, E.
    Khojier, K.
    Zoriasatain, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (49) : 29620 - 29628
  • [39] Structural, optical, and surface properties of WO3 thin films for solar cells
    Simchi, H.
    McCandless, B. E.
    Meng, T.
    Shafarman, W. N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 617 : 609 - 615
  • [40] Properties of Electrodeposited WO3 Thin Films
    de Andrade, Juliana R.
    Cesarino, Ivana
    Zhang, Rui
    Kanicki, Jerzy
    Pawlicka, Agnieszka
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2014, 604 (01) : 71 - 83