Generalized Fibonacci numbers and Bernoulli polynomials

被引:0
|
作者
Shannon, Anthony G. [1 ]
Deveci, Omur [2 ]
Erdag, Ozgur [2 ]
机构
[1] Univ New South Wales, Warrane Coll, Kensington, NSW 2033, Australia
[2] Kafkas Univ, Fac Sci & Letters, Dept Math, TR-36100 Kars, Turkey
关键词
Fibonacci polynomials; Difference operators; Generalized Fibonacci and Lucas numbers; Bernoulli numbers and polynomials;
D O I
10.7546/nntdm.2019.25.1.193-198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Relationships, in terms of equations and congruences, are developed between the Bernoulli numbers and arbitrary order generalizations of the ordinary Fibonacci and Lucas numbers. Some of these are direct connections and others are analogous similarities.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条
  • [21] On Chebyshev polynomials and Fibonacci numbers
    Zhang, WP
    FIBONACCI QUARTERLY, 2002, 40 (05): : 424 - 428
  • [22] Pell numbers and Fibonacci polynomials
    Seiffert, H. -J.
    Bruckman, Paul S.
    FIBONACCI QUARTERLY, 2006, 44 (02): : 189 - 191
  • [23] Congruences concerning Bernoulli numbers and Bernoulli polynomials
    Sun, ZH
    DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) : 193 - 223
  • [24] SOME IDENTITIES OF THE GENERALIZED TWISTED BERNOULLI NUMBERS AND POLYNOMIALS OF HIGHER ORDER
    Rim, Seog-Hoon
    Kim, Young-Hee
    Lee, Byungje
    Kim, Taekyun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (03) : 695 - 702
  • [25] On hypergeometric Bernoulli numbers and polynomials
    Hu, S.
    Kim, M. -S.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (01) : 134 - 146
  • [26] BERNOULLI NUMBERS AND BESSEL POLYNOMIALS
    ALSALAM, WA
    CARLITZ, L
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (03) : 437 - 445
  • [27] On hypergeometric Bernoulli numbers and polynomials
    S. Hu
    M.-S. Kim
    Acta Mathematica Hungarica, 2018, 154 : 134 - 146
  • [28] Formulas for Bernoulli Numbers and Polynomials
    Abel, Ulrich
    Alzer, Horst
    RESULTS IN MATHEMATICS, 2024, 79 (07)
  • [29] GENERALIZED FIBONACCI NUMBERS
    MILLER, MD
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (10): : 1108 - &
  • [30] GENERALIZED FIBONACCI NUMBERS
    DRESEL, LAG
    FIBONACCI QUARTERLY, 1986, 24 (02): : 184 - 184