Strong solutions and trajectory attractors to the thin-film equation with absorption

被引:1
|
作者
Kapustyan, Oleksiy, V [1 ]
Kasyanov, Pavlo O. [2 ]
Taranets, Roman M. [3 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
[2] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Inst Appl Syst Anal, Kiev, Ukraine
[3] NASU, Inst Appl Math & Mech, Sloviansk, Ukraine
关键词
Thin film equation; Strong solution; Trajectory attractor; MULTIVALUED SEMIFLOWS; GLOBAL ATTRACTORS; BEHAVIOR; LIQUID; SET;
D O I
10.1016/j.jmaa.2020.124562
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local and global in time existence of non-negative weak solutions to the thin-film equation with absorption and obtain sufficient conditions for extra regularity of these solutions. Moreover, for the class of global strong solutions, we show existence of a trajectory attractor. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Strong trajectory attractors for dissipative Euler equations
    Chepyzhov, V. V.
    Vishik, M. I.
    Zelik, S. V.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (04): : 395 - 407
  • [32] Study on abundant explicit wave solutions of the thin-film Ferro-electric materials equation
    Zahran, Emad H.
    Mirhosseini-Alizamini, Seyed M.
    Shehata, Maha S. M.
    Rezazadeh, Hadi
    Ahmad, Hijaz
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (01)
  • [33] Study on abundant explicit wave solutions of the thin-film Ferro-electric materials equation
    Emad H. Zahran
    Seyed M. Mirhosseini-Alizamini
    Maha S. M. Shehata
    Hadi Rezazadeh
    Hijaz Ahmad
    Optical and Quantum Electronics, 2022, 54
  • [34] Compensation Research of the Thin Film Absorption in Thin-Film Thickness Wideband Monitoring System
    Shang Xiao-yan
    Han Jun
    Kun Ying-xiu
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 955 - +
  • [35] INTERFACE PROPAGATION PROPERTIES FOR A NONLOCAL THIN-FILM EQUATION
    De Nitti, Nicola
    Taranets, Roman M.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 173 - 196
  • [36] A thin-film equation for viscoelastic liquids of Jeffreys type
    M. Rauscher
    A. Münch
    B. Wagner
    R. Blossey
    The European Physical Journal E, 2005, 17 : 373 - 379
  • [37] RATE EQUATION APPROACHES TO THIN-FILM NUCLEATION KINETICS
    VENABLES, JA
    PHILOSOPHICAL MAGAZINE, 1973, 27 (03): : 697 - 738
  • [38] Convergence to Equilibrium for a Thin-Film Equation on a Cylindrical Surface
    Burchard, Almut
    Chugunova, Marina
    Stephens, Benjamin K.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 585 - 609
  • [39] A thin-film equation for viscoelastic liquids of Jeffreys type
    Rauscher, M
    Münch, A
    Wagner, B
    Blossey, R
    EUROPEAN PHYSICAL JOURNAL E, 2005, 17 (03): : 373 - 379
  • [40] CPA VALENTA EQUATION IN A DILUTE FERROMAGNETIC THIN-FILM
    KANEYOSHI, T
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1975, 69 (01): : K41 - K43