Strong solutions and trajectory attractors to the thin-film equation with absorption

被引:1
|
作者
Kapustyan, Oleksiy, V [1 ]
Kasyanov, Pavlo O. [2 ]
Taranets, Roman M. [3 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
[2] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Inst Appl Syst Anal, Kiev, Ukraine
[3] NASU, Inst Appl Math & Mech, Sloviansk, Ukraine
关键词
Thin film equation; Strong solution; Trajectory attractor; MULTIVALUED SEMIFLOWS; GLOBAL ATTRACTORS; BEHAVIOR; LIQUID; SET;
D O I
10.1016/j.jmaa.2020.124562
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local and global in time existence of non-negative weak solutions to the thin-film equation with absorption and obtain sufficient conditions for extra regularity of these solutions. Moreover, for the class of global strong solutions, we show existence of a trajectory attractor. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On uniqueness of weak solutions for the thin-film equation
    John, Dominik
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 4122 - 4171
  • [2] Local strong solutions to a quasilinear degenerate fourth-order thin-film equation
    Lienstromberg, Christina
    Mueller, Stefan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (02):
  • [3] Local strong solutions to a quasilinear degenerate fourth-order thin-film equation
    Christina Lienstromberg
    Stefan Müller
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [4] Soliton solutions of thin-film ferroelectric materials equation
    Sadaf, Maasoomah
    Arshed, Saima
    Akram, Ghazala
    ul Nabi, Andleeb
    Ahmad, Hijaz
    Askar, Sameh
    RESULTS IN PHYSICS, 2024, 58
  • [5] Pressure-dipole solutions of the thin-film equation
    Bowen, M.
    Witelski, T. P.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (02) : 358 - 399
  • [6] The stochastic thin-film equation: Existence of nonnegative martingale solutions
    Gess, Benjamin
    Gnann, Manuel, V
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (12) : 7260 - 7302
  • [7] Martingale solutions to the stochastic thin-film equation in two dimensions
    Sauerbrey, Max
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 373 - 412
  • [8] Strong Solutions and Global Attractors for Kirchhoff Type Equation
    Chen, Xiangping
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [9] Long-time asymptotics for strong solutions of the thin film equation
    Carrillo, JA
    Toscani, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (03) : 551 - 571
  • [10] Long-Time Asymptotics for Strong Solutions¶of the Thin Film Equation
    J. A. Carrillo
    G. Toscani
    Communications in Mathematical Physics, 2002, 225 : 551 - 571