On lower bounds for integration of multivariate permutation-invariant functions

被引:5
|
作者
Weimar, Markus [1 ]
机构
[1] Univ Marburg, Fac Math & Comp Sci, D-35032 Marburg, Germany
关键词
Permutation-invariance; Integration; Information complexity; Tractability; Lower bounds;
D O I
10.1016/j.jco.2013.10.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note we study multivariate integration for permutationinvariant functions from a certain Banach space Ed,a of Korobov type in the worst case setting. We present a lower error bound which particularly implies that in dimension d every cubature rule which reduces the initial error necessarily uses at least d + 1 function values. Since this holds independently of the number of permutation-invariant coordinates, this shows that the integration problem can never be strongly polynomially tractable in this setting. Our assertions generalize results due to Sloan and Woiniakowski (1997) [3]. Moreover, for large smoothness parameters a our bound cannot be improved. Finally, we extend our results to the case of permutation-invariant functions from Korobov-type spaces equipped with product weights. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [31] Path planning for permutation-invariant multi-robot formations
    Kloder, S
    Hutchinson, S
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 1797 - 1802
  • [32] SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval
    Pang, Liang
    Xu, Jun
    Ai, Qingyao
    Lan, Yanyan
    Cheng, Xueqi
    Wen, Jirong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 499 - 508
  • [33] Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction
    Herzig, Roei
    Raboh, Moshiko
    Chechik, Gal
    Berant, Jonathan
    Globerson, Amir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [34] Permutation-Invariant Cascaded Attentional Set Operator for Computational Nephropathology
    Zare, Samira
    Vo, Huy Q.
    Altini, Nicola
    Bevilacqua, Vitoantonio
    Rossini, Michele
    Pesce, Francesco
    Gesualdo, Loreto
    Turkevi-Nagy, Sandor
    Becker, Jan Ulrich
    Mohan, Chandra
    Van Nguyen, Hien
    KIDNEY360, 2025, 6 (03): : 441 - 450
  • [35] Permutation-invariant codes encoding more than one qubit
    Ouyang, Yingkai
    Fitzsimons, Joseph
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [36] Initializing a permutation-invariant quantum error-correction code
    Wu, Chunfeng
    Wang, Yimin
    Guo, Chu
    Ouyang, Yingkai
    Wang, Gangcheng
    Feng, Xun-Li
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [37] Permutation-Invariant Quantum Codes With Transversal Generalized Phase Gates
    Kubischta, Eric
    Teixeira, Ian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 485 - 498
  • [38] Lower bounds for multivariate approximation by affine-invariant dictionaries
    Maiorov, V
    Meir, R
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1569 - 1575
  • [39] A configuration space for permutation-invariant multi-robot formations
    Kloder, S
    Bhattacharya, S
    Hutchinson, S
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 2746 - 2751
  • [40] New Lower Bounds for the Integration of Periodic Functions
    David Krieg
    Jan Vybíral
    Journal of Fourier Analysis and Applications, 2023, 29