NOTES ON LIE IDEALS OF SIMPLE ARTINIAN RINGS

被引:0
|
作者
Ariannejad, M. [1 ]
Emami, M. [1 ]
机构
[1] Univ Zanjan, Dept Math, Zanjan, Iran
关键词
Simple ring; division ring; Lie ideal; Lie ring;
D O I
10.1142/S0219498813500382
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a ring. If we replace the original associative product of R with their canonic Lie product, or [a, b] = ab - ba for every a, b in R, then R would be a Lie ring. With this new product the additive commutator subgroup of R or [R, R] is a Lie subring of R. Herstein has shown that in a simple ring R with characteristic unequal to 2, any Lie ideal of R either is contained in Z(R), the center of R or contains [R, R]. He also showed that in this situation the Lie ring [R, R]/Z[R, R] is simple. We give an alternative matrix proof of these results for the special case of simple artinian rings and show that in this case the characteristic condition can be more restricted.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Lie Ideals and Jordan Triple Derivations in Rings
    Hongan, Motoshi
    Rehman, Nadeem Ur
    Al-Omary, Radwan Mohammed
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 147 - 156
  • [42] Generalized derivations on Lie ideals in prime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 179 - 190
  • [43] On *-(σ, T)-Lie ideals of *-prime rings with derivation
    Aydin, Neset
    Koc, Emine
    Golbasi, Oznur
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (05): : 1240 - 1247
  • [44] Lie ideals and generalized (α, β)-derivations of *-prime rings
    Rehman N.U.
    AL-Omary R.M.
    Huang S.
    Afrika Matematika, 2013, 24 (4) : 503 - 510
  • [45] On generalized (α,β)-derivations and Lie ideals of prime rings
    Sandhu, Gurninder S.
    Ali, Shakir
    Boua, Abdelkarim
    Kumar, Deepak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 499 - 513
  • [46] Generalized derivations on Lie ideals in prime rings
    Basudeb Dhara
    Sukhendu Kar
    Sachhidananda Mondal
    Czechoslovak Mathematical Journal, 2015, 65 : 179 - 190
  • [47] SOME RESULTS ON PRIME RINGS AND (σ, τ) - LIE IDEALS
    Gueven, E.
    Soytuerk, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2007, 36 (01): : 19 - 25
  • [48] An identity on automorphisms of Lie ideals in prime rings
    Rehman, N.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 33 (02): : 118 - 127
  • [49] An identity on automorphisms of Lie ideals in prime rings
    Raza M.A.
    ur Rehman N.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2016, 62 (1) : 143 - 150
  • [50] A NOTE ON AUTOMORPHISMS OF LIE IDEALS IN PRIME RINGS
    Davvaz, Bijan
    Raza, Mohd Arif
    MATHEMATICA SLOVACA, 2018, 68 (05) : 1223 - 1229