Production function estimation in Stata using the Ackerberg-Caves-Frazer method

被引:24
|
作者
Manjon, Miguel [1 ]
Manez, Juan [2 ,3 ]
机构
[1] Univ Rovira & Virgili, Dept Econ, Res Ctr Ind & Publ Econ, Reus, Spain
[2] Univ Valencia, Dept Appl Econ 2, Valencia, Spain
[3] Univ Valencia, Estruct Recerca Interdisciplinar Comportament Eco, Valencia, Spain
来源
STATA JOURNAL | 2016年 / 16卷 / 04期
关键词
st0460; acfest; endogeneity; generalized method of moments; levpet; opreg; production functions; UNOBSERVABLES;
D O I
10.1177/1536867X1601600406
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We present a new e-class command, acfest, that implements the method of Ackerberg, Caves, and Frazer (2015, Econometrica 83: 2411-2451) to estimate production functions. This method deals with the functional dependence problems that may arise in the methods proposed by Olley and Pakes (1996, Econometrica 64: 1263-1297) and, particularly, Levinsohn and Petrin (2003, Review of Economic Studies 70: 317-341) (implemented in Stata by Yasar, Raciborski, and Poi [2008, Stata Journal 8: 221-231] and Petrin, Poi, and Levinsohn [2004, Stata Journal 4: 113-123], respectively). In particular, the acfest command yields (nonlinear, robust) generalized method of moments estimates using a Mata function and two specification tests (Wald and Sargan Hansen). After estimation, predict provides the estimated productivity of the firms in the sample.
引用
收藏
页码:900 / 916
页数:17
相关论文
共 50 条
  • [1] Production function estimation in Stata using the Olley and Pakes method
    Yasar, Mahmut
    Raciborski, Rafal
    Poi, Brian
    [J]. STATA JOURNAL, 2008, 8 (02): : 221 - 231
  • [2] Production function estimation in Stata using inputs to control for unobservables
    Petrin, Amil
    Poi, Brian P.
    Levinsohn, James
    [J]. STATA JOURNAL, 2004, 4 (02): : 113 - 123
  • [3] Theory and practice of total-factor productivity estimation: The control function approach using Stata
    Rovigatti, Gabriele
    Mollisi, Vincenzo
    [J]. STATA JOURNAL, 2018, 18 (03): : 618 - 662
  • [4] A Specific Effort Estimation Method Using Function Point
    Jeng, Bingchiang
    Yeh, Dowming
    Wang, Deron
    Chu, Shu-Lan
    Chen, Chia-Mei
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2011, 27 (04) : 1363 - 1376
  • [5] Estimation of the Probability Density Function of Renewable Power Production using a Hybrid Method of Minimum Frequency and Maximum Entropy
    Li, Dan
    Yan, Wei
    Li, Wenyuan
    Chen, Tao
    [J]. 2016 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2016,
  • [6] Estimation of Doppler Profile Using Multiparameter Cost Function Method
    Sinha, Swati
    Sarma, Tummalapalli Venkata Chandrasekhar
    Regeena, Mary Lourde
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 932 - 942
  • [7] EFFICIENCY ESTIMATION IN A PROFIT MAXIMIZING MODEL USING FLEXIBLE PRODUCTION FUNCTION
    KUMBHAKAR, SC
    [J]. AGRICULTURAL ECONOMICS, 1994, 10 (02) : 143 - 152
  • [8] Empirical estimation of production risk using a cost function with panel data
    Huang, TH
    [J]. APPLIED ECONOMICS LETTERS, 2004, 11 (05) : 297 - 301
  • [9] Kinetic parameters estimation of protease production using penalty function method with hybrid genetic algorithm and particle swarm optimization
    Ghovvati, Mahsa
    Khayati, Gholam
    Attar, Hossein
    Vaziri, Ali
    [J]. BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2016, 30 (02) : 404 - 410
  • [10] Estimation of Evapotranspiration of Amazon Rainforest Using the Maximum Entropy Production Method
    Xu, Donghui
    Agee, Elizabeth
    Wang, Jingfeng
    Ivanov, Valeriy Y.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (03) : 1402 - 1412