An embedded phase-fitted modified Runge-Kutta method for the numerical integration of the radial Schrodinger equation

被引:32
|
作者
Van de Vyver, H [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
关键词
embedded explicit Runge-Kutta methods; variable stepsize algorithms; phase-fitting; resonance problem; phase-shift problem;
D O I
10.1016/j.physleta.2005.12.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new way for constructing efficient embedded modified Runge-Kutta methods for the numerical solution of the Schrodinger equation is presented in this Letter. The methods of the embedded scheme have algebraic orders five and four. Applications of the new pair to several problems arising from the radial Schrodinger equation indicate that the new pair is more efficient than other well known comparable embedded Runge-Kutta pairs. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 50 条
  • [21] A New Optimized Runge-Kutta Pair for the Numerical Solution of the Radial Schrodinger Equation
    Fang, Yonglei
    Li, Qinghong
    Ming, Qinghe
    Wang, Kaimin
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [22] An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation and related periodic initial-value problems
    Avdelas, G
    Simos, TE
    Vigo-Aguiar, J
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 131 (1-2) : 52 - 67
  • [23] An embedded 5(4) pair of modified explicit Runge-Kutta methods for the numerical solution of the Schrodinger equation
    Van de Vyver, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (06): : 879 - 894
  • [24] A New Family of Phase-Fitted and Amplification-Fitted Runge-Kutta Type Methods for Oscillators
    Chen, Zhaoxia
    You, Xiong
    Shu, Xin
    Zhang, Mei
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [25] Trigonometrically fitted fifth-order Runge-Kutta methods for the numerical solution of the Schrodinger equation
    Anastassi, ZA
    Simos, TE
    MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (7-8) : 877 - 886
  • [26] A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrodinger equation and related problems
    Simos, TE
    Vigo-Aguiar, J
    COMPUTERS & CHEMISTRY, 2001, 25 (03): : 275 - 281
  • [27] Embedded Pairs of Exponentially Fitted Explicit Runge-Kutta Methods for the Numerical Integration of Oscillatory Problems
    Paris, A.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1008 - 1010
  • [28] A new modified embedded 5(4) pair of explicit Runge-Kutta methods for the numerical solution of the Schrodinger equation
    Liu, Shiwei
    Zheng, Juan
    Fang, Yonglei
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (03) : 937 - 953
  • [29] A New Trigonometrically Fitted Two-Derivative Runge-Kutta Method for the Numerical Solution of the Schrodinger Equation and Related Problems
    Zhang, Yanwei
    Che, Haitao
    Fang, Yonglei
    You, Xiong
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [30] EXPONENTIALLY FITTED TWO-DERIVATIVE RUNGE-KUTTA METHODS FOR THE SCHRODINGER EQUATION
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (10):