An embedded phase-fitted modified Runge-Kutta method for the numerical integration of the radial Schrodinger equation

被引:32
|
作者
Van de Vyver, H [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
关键词
embedded explicit Runge-Kutta methods; variable stepsize algorithms; phase-fitting; resonance problem; phase-shift problem;
D O I
10.1016/j.physleta.2005.12.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new way for constructing efficient embedded modified Runge-Kutta methods for the numerical solution of the Schrodinger equation is presented in this Letter. The methods of the embedded scheme have algebraic orders five and four. Applications of the new pair to several problems arising from the radial Schrodinger equation indicate that the new pair is more efficient than other well known comparable embedded Runge-Kutta pairs. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 50 条
  • [1] A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation
    Simos, TE
    Vigo-Aguiar, J
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 30 (01) : 121 - 131
  • [2] A new phase-fitted modified Runge-Kutta pair for the numerical solution of the radial Schrodinger equation
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 432 - 441
  • [3] A modified phase-fitted and amplification-fitted Runge-Kutta-Nystrom method for the numerical solution of the radial Schrodinger equation
    Papadopoulos, D. F.
    Anastassi, Z. A.
    Simos, T. E.
    JOURNAL OF MOLECULAR MODELING, 2010, 16 (08) : 1339 - 1346
  • [4] A Phase-fitted Symplectic Partitioned Runge-Kutta Methods for the Numerical Solution of the Schrodinger Equation
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1595 - +
  • [5] Phase fitted symplectic partitioned Runge-Kutta methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (07) : 1736 - 1746
  • [6] A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation
    T.E. Simos
    Jesus Vigo Aguiar
    Journal of Mathematical Chemistry, 2001, 30 : 121 - 131
  • [7] An Optimized Runge-Kutta Method for the Numerical Solution of the Radial Schrodinger Equation
    Ming, Qinghe
    Yang, Yanping
    Fang, Yonglei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [8] A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation
    D. F. Papadopoulos
    Z. A. Anastassi
    T. E. Simos
    Journal of Molecular Modeling, 2010, 16 : 1339 - 1346
  • [9] Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation
    Anastassi, ZA
    Simos, TE
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) : 281 - 293
  • [10] A Phase-Fitted and Amplification-Fitted Modified Runge-Kutta Method of Fourth Order for Periodic Initial Value Problems
    Fawzi, Firas A.
    Senu, Norazak
    Ismail, Fudziah
    Abd Majid, Zanariah
    2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 25 - 28