Improving iris recognition performance via multi-instance fusion at the score level

被引:3
|
作者
Wang, Fenghua [1 ]
Yao, Xianghua [1 ]
Han, Jiuqiang [1 ]
机构
[1] Xian Jiaotong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.3788/COL20080611.0824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fusion of multiple instances within a modality for biometric verification performance improvement has received considerable attention. In this letter, we present an iris recognition method based on multi-instance fusion, which combines the left and right irises of an individual at the matching score level. When fusing, a novel fusion strategy using minimax probability machine (MPM) is applied to generate a fused score for the final decision. The experimental results on CASIA and UBIRIS databases show that the proposed method can bring obvious performance improvement compared with the single-instance method. The comparison among different fusion strategies demonstrates the superiority of the fusion strategy based on MPM.
引用
收藏
页码:824 / 826
页数:3
相关论文
共 50 条
  • [31] Synergetic Multi-Semantic Multi-Instance Learning for Scene Recognition
    Feng, Wengang
    Chen, Xue
    [J]. ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2188 - 2191
  • [32] Multi-Modal Multi-Instance Learning for Retinal Disease Recognition
    Li, Xirong
    Zhou, Yang
    Wang, Jie
    Lin, Hailan
    Zhao, Jianchun
    Ding, Dayong
    Yu, Weihong
    Chen, Youxin
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2474 - 2482
  • [33] Multi-Instance Dimensionality Reduction via Sparsity and Orthogonality
    Zhu, Hong
    Liao, Li-Zhi
    Ng, Michael K.
    [J]. NEURAL COMPUTATION, 2018, 30 (12) : 3281 - 3308
  • [34] Single-sensor multi-instance fingerprint and eigenfinger recognition using (weighted) score combination methods
    Uhl, Andreas
    Wild, Peter
    [J]. INTERNATIONAL JOURNAL OF BIOMETRICS, 2009, 1 (04) : 442 - 462
  • [35] Multi-instance Embedding Learning Through High-level Instance Selection
    Yang, Mei
    Zeng, Wen-Xi
    Min, Fan
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT II, 2022, 13281 : 122 - 133
  • [36] Instance-level accuracy versus bag-level accuracy in multi-instance learning
    Vanwinckelen, Gitte
    do O, Vinicius Tragante
    Fierens, Daan
    Blockeel, Hendrik
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2016, 30 (02) : 313 - 341
  • [37] Instance-level accuracy versus bag-level accuracy in multi-instance learning
    Gitte Vanwinckelen
    Vinicius Tragante do O
    Daan Fierens
    Hendrik Blockeel
    [J]. Data Mining and Knowledge Discovery, 2016, 30 : 313 - 341
  • [38] Multi-instance Finger Vein Recognition Using Minutiae Matching
    Ong, Thian Song
    Teng, Jackson Horlick
    Muthu, Kalaiarasi Sonai
    Teoh, Andrew Beng Jin
    [J]. 2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 1730 - 1735
  • [39] Facial expression recognition based on ASM and Multi-instance boosting
    Zhu, Shaoping
    [J]. Computer Modelling and New Technologies, 2014, 18 (12): : 323 - 330
  • [40] CASCADE OF MULTI-LEVEL MULTI-INSTANCE CLASSIFIERS FOR IMAGE ANNOTATION
    Cam-Tu Nguyen
    Ha Vu Le
    Tokuyama, Takeshi
    [J]. KDIR 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2011, : 14 - 23