A low-dispersion and low-dissipation implicit Runge-Kutta scheme

被引:23
|
作者
Najafi-Yazdi, A. [1 ]
Mongeau, L. [1 ]
机构
[1] McGill Univ, Dept Mech Engn, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Runge-Kutta; Time integration; Aeroacoustics; Wave propagation; Implicit scheme; FINITE-DIFFERENCE SCHEMES; NAVIER-STOKES EQUATIONS; COMPUTATIONAL ACOUSTICS; BOUNDARY-CONDITIONS; RESOLUTION;
D O I
10.1016/j.jcp.2012.08.050
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fourth-order, implicit, low-dispersion, and low-dissipation Runge-Kutta scheme is introduced. The scheme is optimized for minimal dissipation and dispersion errors. High order accuracy is achieved with fewer stages than standard explicit Runge-Kutta schemes. The scheme is designed to be A-stable for highly stiff problems. Possible applications include wall-bounded flows with solid boundaries in the computational domain, and sound generation by reacting flows. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:315 / 323
页数:9
相关论文
共 50 条
  • [21] An efficient scheme for the implementation of implicit Runge-Kutta methods
    L. M. Skvortsov
    Computational Mathematics and Mathematical Physics, 2008, 48 : 2007 - 2017
  • [22] Implicit extensions of an explicit multirate Runge-Kutta scheme
    Constantinescu, Emil M.
    APPLIED MATHEMATICS LETTERS, 2022, 128
  • [23] Runge–Kutta projection methods with low dispersion and dissipation errors
    M. Calvo
    M. P. Laburta
    J. I. Montijano
    L. Rández
    Advances in Computational Mathematics, 2015, 41 : 231 - 251
  • [24] LINEARLY-IMPLICIT RUNGE-KUTTA METHODS BASED ON IMPLICIT RUNGE-KUTTA METHODS
    BRUDER, J
    APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) : 33 - 40
  • [25] Scale-Resolving Simulations with a Low-Dissipation Low-Dispersion Second-Order Scheme for Unstructured Flow Solvers
    Probst, Axel
    Loewe, Johannes
    Reuss, Silvia
    Knopp, Tobias
    Kessler, Roland
    AIAA JOURNAL, 2016, 54 (10) : 2972 - 2987
  • [26] A new class of diagonally implicit Runge-Kutta methods with zero dissipation and minimized dispersion error
    Giri, Subhajit
    Sen, Shuvam
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [27] IMPLICIT RUNGE-KUTTA PROCESSES
    BUTCHER, JC
    MATHEMATICS OF COMPUTATION, 1964, 18 (85) : 50 - &
  • [28] IMPLICIT RUNGE-KUTTA FORMULAS
    FILIPPI, S
    SOMMER, D
    ELECTRONISCHE DATENVERARBEITUNG, 1968, 10 (03): : 113 - &
  • [29] RUNGE-KUTTA/IMPLICIT SCHEME FOR THE SOLUTION OF TIME SPECTRAL METHOD
    Ma, Can
    Su, Xinrong
    Gou, Jinlan
    Yuan, Xin
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 2D, 2014,
  • [30] Investigation of low-dissipation low-dispersion schemes for incompressible and compressible flows in scale-resolving simulations
    Carlsson, Magnus
    Davidson, Lars
    Peng, Shia-Hui
    Arvidson, Sebastian
    COMPUTERS & FLUIDS, 2023, 251