PI3K/AKT/mTOR pathway in angiogenesis

被引:1074
|
作者
Karar, Jayashree [1 ,2 ]
Maity, Amit [1 ,2 ]
机构
[1] Univ Penn, Dept Radiat Oncol, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA
来源
关键词
angiogenesis; PI3K/AKT/mTOR; VEGF; nitric oxide; angiopoietins; ENDOTHELIAL GROWTH-FACTOR; PHOSPHATIDYLINOSITOL 3-KINASE/MAMMALIAN TARGET; FACTOR RECEPTOR INHIBITION; HUMAN GLIOBLASTOMA CELLS; NITRIC-OXIDE PRODUCTION; INDUCIBLE FACTOR-I; H-RAS; VEGF EXPRESSION; CANCER-CELLS; REGULATES ANGIOGENESIS;
D O I
10.3389/fnmol.2011.00051
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The phosphatidylinositol 3-kinase (P13K)/AKT/mammalian target of rapamycin (mTOR) pathway is activated in the majority of human cancers. This pathway is known to play a key role in numerous cellular functions including proliferation, adhesion, migration, invasion, metabolism, and survival, but in the current review we focus on its role in angiogenesis. PI3K activation may occur via RAS mutation, loss of phosphatase and tensin homolog (PTEN), or by increased expression of growth factor receptors such as epidermal growth factor receptor. There is a connection between the PI3K pathway and angiogenesis. Hypoxia leads to HIF-1 alpha stabilization and is a major stimulus for increased vascular endothelial growth factor (VEGF) production by tumor cells. However, activation of the PI3K/AKT pathway in tumor cells can also increase VEGF secretion, both by hypoxia-inducible factor 1 (HIF-1) dependent and independent mechanisms. The PI3K/AKT pathway also modulates the expression of other angiogenic factors such as nitric oxide and angiopoietins. Numerous inhibitors targeting the PI3K/AKT/mTOR pathway have been developed, and these agents have been shown to decrease VEGF secretion and angiogenesis. The effect of these inhibitors on tumor vasculature can be difficult to predict. The vasculature of tumors is aberrant, leading to sluggish bloodflow and elevated interstitial blood pressure, which can be perpetuated by the high levels of VEGF Hence, decreasing VEGF expression can paradoxically lead to vascular normalization and improved bloodflow in some tumors. In addition to its importance in cancer, the PI3K pathway also plays an essential role in the formation of normal blood vessels during development. Embryos with kinase-dead p110a catalytic subunit of PI3K develop vascular defects. Stimulation of endothelial cells byVEGF leads to activation of the PI3K pathway within these cells, which is important for cell migration. Sustained endothelial activation of AKT1 has been shown to induce the formation of structurally abnormal blood vessels that recapitulate the aberrations of tumor vessels. Hence, the PI3K pathway plays an important role in regulating angiogenesis both in normal tissues and in cancers.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer
    Mabuchi, Seiji
    Kuroda, Hiromasa
    Takahashi, Ryoko
    Sasano, Tomoyuki
    GYNECOLOGIC ONCOLOGY, 2015, 137 (01) : 173 - 179
  • [42] Targeting the PI3K/Akt/mTOR Pathway for Breast Cancer Therapy
    Justin Cidado
    Ben Ho Park
    Journal of Mammary Gland Biology and Neoplasia, 2012, 17 : 205 - 216
  • [43] Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors
    Welker, Mark E.
    Kulik, George
    BIOORGANIC & MEDICINAL CHEMISTRY, 2013, 21 (14) : 4063 - 4091
  • [44] Targeting the PI3K/Akt/mTOR signalling pathway in Cystic Fibrosis
    R. Reilly
    M. S. Mroz
    E. Dempsey
    K. Wynne
    S. J. Keely
    E. F. McKone
    C. Hiebel
    C. Behl
    J. A. Coppinger
    Scientific Reports, 7
  • [45] The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas
    Monsalves, Eric
    Juraschka, Kyle
    Tateno, Toru
    Agnihotri, Sameer
    Asa, Sylvia L.
    Ezzat, Shereen
    Zadeh, Gelareh
    ENDOCRINE-RELATED CANCER, 2014, 21 (04) : R331 - R344
  • [46] The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review
    Sun, K.
    Luo, J.
    Guo, J.
    Yao, X.
    Jing, X.
    Guo, F.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (04) : 400 - 409
  • [47] The PI3K/AKT/mTOR Signaling Pathway Is Overactivated in Primary Aldosteronism
    Su, Hengchuan
    Gu, Yanyun
    Li, Fengying
    Wang, Qidi
    Huang, Baoxing
    Jin, Xiaolong
    Ning, Guang
    Sun, Fukang
    PLOS ONE, 2013, 8 (04):
  • [48] Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway
    Polivka, Jiri, Jr.
    Janku, Filip
    PHARMACOLOGY & THERAPEUTICS, 2014, 142 (02) : 164 - 175
  • [49] The Importance of the PI3K/AKT/MTOR Pathway in the Progression of Ovarian Cancer
    Dobbin, Zachary C.
    Landen, Charles N.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (04): : 8213 - 8227
  • [50] Vertical inhibition of the PI3K/Akt/mTOR pathway for the treatment of osteoarthritis
    Chen, Jiezhong
    Crawford, Ross
    Xiao, Yin
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2013, 114 (02) : 245 - 249