Fixed-time terminal synergetic observer for synchronization of fractional-order chaotic systems

被引:21
|
作者
Balamash, A. S. [1 ,2 ]
Bettayeb, M. [1 ,3 ]
Djennoune, S. [4 ]
Al-Saggaf, U. M. [1 ,5 ]
Moinuddin, M. [1 ,5 ]
机构
[1] King Abdulaziz Univ, Ctr Excellence Intelligent Engn Syst CEIES, POB 80200, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Dept Elect Engn, POB 80200, Jeddah 21589, Saudi Arabia
[3] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates
[4] Univ Mouloud Mammeri, Lab Concept & Conduite Syst Prod, POB 15000, Tizi Ouzou, Algeria
[5] King Abdulaziz Univ, Dept Elect & Comp Engn, POB 80200, Jeddah 21589, Saudi Arabia
关键词
SLIDING-MODE CONTROL; SECURE COMMUNICATION; INITIAL CONDITIONS; DESIGN; UNIQUENESS; EXISTENCE;
D O I
10.1063/1.5142989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a fixed-time terminal synergetic observer for synchronization of fractional-order nonlinear chaotic systems is proposed. First, fixed-time terminal attractors for fractional-order nonlinear systems are introduced on the basis of fixed-time stability of integer-order nonlinear differential equations and on defining particular fractional-order macro-variables. Second, a new synergetic observer dedicated to the synchronization of fractional-order chaotic systems is developed. The proposed observer converges in a predefined fixed-time uniformly bounded with respect to initial conditions. Thanks to the step-by-step procedure, only one communication channel is used to achieve the synchronization. Third, a fixed-time synergetic extended observer with unknown input is constructed to simultaneously estimate the state variables and to recover the unknown input. Finally, computer simulations are performed to illustrate the efficiency of the proposed synchronization method and its application in a secure communication scheme.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Synchronization of fractional-order chaotic systems with uncertain parameters
    Zhang, Hong
    Pu, Qiumei
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 723 - 727
  • [42] Wavelet Phase Synchronization of Fractional-Order Chaotic Systems
    Chen Feng
    Xia Lei
    Li Chun-Guang
    CHINESE PHYSICS LETTERS, 2012, 29 (07)
  • [43] Function projective synchronization for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 811 - 816
  • [44] Prescribed performance synchronization for fractional-order chaotic systems
    Liu Heng
    Li Sheng-Gang
    Sun Ye-Guo
    Wang Hong-Xing
    CHINESE PHYSICS B, 2015, 24 (09)
  • [45] GENERALIZED SYNCHRONIZATION OF NONIDENTICAL FRACTIONAL-ORDER CHAOTIC SYSTEMS
    Wang Xing-Yuan
    Hu Zun-Wen
    Luo Chao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (30):
  • [46] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [47] Prescribed performance synchronization for fractional-order chaotic systems
    刘恒
    李生刚
    孙业国
    王宏兴
    Chinese Physics B, 2015, 24 (09) : 157 - 164
  • [48] The Synchronization of Three Fractional-Order Lorenz Chaotic Systems
    Yu, Yong-Guang
    Wen, Guo-Guang
    Li, Han-Xiong
    Diao, Miao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (03) : 379 - 386
  • [49] A New Method on Synchronization of Fractional-Order Chaotic Systems
    Wang, Zhiliang
    Zhang, Huaguang
    Li, Yongfeng
    Sun, Ning
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3557 - +
  • [50] A practical synchronization approach for fractional-order chaotic systems
    Ping Zhou
    Peng Zhu
    Nonlinear Dynamics, 2017, 89 : 1719 - 1726