Fixed-time terminal synergetic observer for synchronization of fractional-order chaotic systems

被引:21
|
作者
Balamash, A. S. [1 ,2 ]
Bettayeb, M. [1 ,3 ]
Djennoune, S. [4 ]
Al-Saggaf, U. M. [1 ,5 ]
Moinuddin, M. [1 ,5 ]
机构
[1] King Abdulaziz Univ, Ctr Excellence Intelligent Engn Syst CEIES, POB 80200, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Dept Elect Engn, POB 80200, Jeddah 21589, Saudi Arabia
[3] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates
[4] Univ Mouloud Mammeri, Lab Concept & Conduite Syst Prod, POB 15000, Tizi Ouzou, Algeria
[5] King Abdulaziz Univ, Dept Elect & Comp Engn, POB 80200, Jeddah 21589, Saudi Arabia
关键词
SLIDING-MODE CONTROL; SECURE COMMUNICATION; INITIAL CONDITIONS; DESIGN; UNIQUENESS; EXISTENCE;
D O I
10.1063/1.5142989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a fixed-time terminal synergetic observer for synchronization of fractional-order nonlinear chaotic systems is proposed. First, fixed-time terminal attractors for fractional-order nonlinear systems are introduced on the basis of fixed-time stability of integer-order nonlinear differential equations and on defining particular fractional-order macro-variables. Second, a new synergetic observer dedicated to the synchronization of fractional-order chaotic systems is developed. The proposed observer converges in a predefined fixed-time uniformly bounded with respect to initial conditions. Thanks to the step-by-step procedure, only one communication channel is used to achieve the synchronization. Third, a fixed-time synergetic extended observer with unknown input is constructed to simultaneously estimate the state variables and to recover the unknown input. Finally, computer simulations are performed to illustrate the efficiency of the proposed synchronization method and its application in a secure communication scheme.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Comment on "Fractional-order fixed-time nonsingular terminal sliding mode synchronization and control of fractional-order chaotic systems"
    Khanzadeh, Alireza
    Mohammadzaman, Iman
    NONLINEAR DYNAMICS, 2018, 94 (04) : 3145 - 3153
  • [2] Comment on “Fractional-order fixed-time nonsingular terminal sliding mode synchronization and control of fractional-order chaotic systems”
    Alireza Khanzadeh
    Iman Mohammadzaman
    Nonlinear Dynamics, 2018, 94 : 3145 - 3153
  • [3] Adaptive fuzzy control for practical fixed-time synchronization of fractional-order chaotic systems
    Boulkroune, Abdesselem
    Zouari, Farouk
    Boubellouta, Amina
    JOURNAL OF VIBRATION AND CONTROL, 2025,
  • [4] Robust global fixed-time synchronization of different dimensions fractional-order chaotic systems
    Shirkavand, Mehrdad
    Pourgholi, Mahdi
    Yazdizadeh, Alireza
    CHAOS SOLITONS & FRACTALS, 2022, 154
  • [5] Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems
    Ni, Junkang
    Liu, Ling
    Liu, Chongxin
    Hu, Xiaoyu
    NONLINEAR DYNAMICS, 2017, 89 (03) : 2065 - 2083
  • [6] Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems
    Junkang Ni
    Ling Liu
    Chongxin Liu
    Xiaoyu Hu
    Nonlinear Dynamics, 2017, 89 : 2065 - 2083
  • [7] Fractional-Order Financial System and Fixed-Time Synchronization
    He, Yingjin
    Peng, Jun
    Zheng, Song
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [8] Dynamic Behavior and Fixed-Time Synchronization Control of Incommensurate Fractional-Order Chaotic System
    Wang, Xianchen
    Wang, Zhen
    Dang, Shihong
    FRACTAL AND FRACTIONAL, 2025, 9 (01)
  • [9] Terminal observer and disturbance observer for the class of fractional-order chaotic systems
    Mohammad Reza Soltanpour
    Mehrdad Shirkavand
    Soft Computing, 2020, 24 : 8881 - 8898
  • [10] Terminal observer and disturbance observer for the class of fractional-order chaotic systems
    Soltanpour, Mohammad Reza
    Shirkavand, Mehrdad
    SOFT COMPUTING, 2020, 24 (12) : 8881 - 8898