A new MHD code with adaptive mesh refinement and parallelization for astrophysics

被引:24
|
作者
Jiang, R. -L. [1 ,2 ]
Fang, C. [1 ,2 ]
Chen, P. -F. [1 ,2 ]
机构
[1] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Key Lab Modern Astron & Astrophys, Minist Educ, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetohydrodynamics; Numerical methods; Adaptive mesh refinement; PIECEWISE PARABOLIC METHOD; UNSPLIT GODUNOV METHOD; CONSTRAINED-TRANSPORT; IDEAL MHD; SCHEME; MAGNETOHYDRODYNAMICS; HYDRODYNAMICS; SIMULATION; IMPLEMENTATION; RECONNECTION;
D O I
10.1016/j.cpc.2012.02.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new code, named MAP, is written in FORTRAN language for magnetohydrodynamics (MHD) simulations with the adaptive mesh refinement (AMR) and Message Passing Interface (MPI) parallelization. There are several optional numerical schemes for computing the MHD part, namely, modified Mac Cormack Scheme (MMC), Lax-Friedrichs scheme (LF), and weighted essentially non-oscillatory (WENO) scheme. All of them are second-order, two-step, component-wise schemes for hyperbolic conservative equations. The total variation diminishing (TVD) limiters and approximate Riemann solvers are also equipped. A high resolution can be achieved by the hierarchical block-structured AMR mesh. We use the extended generalized Lagrange multiplier (EGLM) MHD equations to reduce the non-divergence free error produced by the scheme in the magnetic induction equation. The numerical algorithms for the non-ideal terms, e.g., the resistivity and the thermal conduction, are also equipped in the code. The details of the AMR and MPI algorithms are described in the paper. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1617 / 1633
页数:17
相关论文
共 50 条
  • [41] PeleMP: The Multiphysics Solver for the Combustion Pele Adaptive Mesh Refinement Code Suite
    Owen, Landon D.
    Ge, Wenjun
    Rieth, Martin
    Arienti, Marco
    Esclapez, Lucas
    Soriano, Bruno S.
    Mueller, Michael E.
    Day, Marcus
    Sankaran, Ramanan
    Chen, Jacqueline H.
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (04):
  • [42] GLAMER - I. A code for gravitational lensing simulations with adaptive mesh refinement
    Metcalf, R. Benton
    Petkova, Margarita
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 445 (02) : 1942 - 1953
  • [43] On architecture and performance of adaptive mesh refinement in an electrostatics Particle-In-Cell code
    Frey, Matthias
    Adelmann, Andreas
    Locans, Uldis
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2020, 247
  • [44] Parallel adaptive mesh refinement
    Diachin, Lori Freitag
    Hornung, Richard
    Plassmann, Paul
    Wissink, Andy
    [J]. PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 143 - 162
  • [45] Cosmological adaptive mesh refinement
    Norman, ML
    Bryan, GL
    [J]. NUMERICAL ASTROPHYSICS, 1999, 240 : 19 - 28
  • [46] Adaptive mesh generation and refinement
    Xia Delan
    Tan Guihui
    [J]. ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL III, 2007, : 586 - +
  • [47] Star Formation in a Turbulent Cloud Core with Self-gravitational MHD Adaptive Mesh Refinement
    Matsumoto, Tomoaki
    [J]. NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2009, 2010, 429 : 22 - 27
  • [48] SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes
    Feng, Xueshang
    Xiang, Changqing
    Zhong, Dingkun
    Zhou, Yufen
    Yang, Liping
    Ma, Xiaopeng
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (07) : 1965 - 1980
  • [49] A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical and geophysical MHD
    Teyssier, Romain
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2007, 101 (3-4): : 199 - 225
  • [50] A NEW ADAPTIVE BOUNDARY MESH REFINEMENT BASED ON SIMPLE ALGORITHM
    KITA, E
    KAMIYA, N
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1991, 18 (04) : 177 - 186