Testing for covariate balance using quantile regression and resampling methods

被引:4
|
作者
Huber, Martin [1 ]
机构
[1] Univ St Gallen, SEW, Dept Econ, CH-9000 St Gallen, Switzerland
关键词
balancing property; balance test; propensity score matching; PROPENSITY-SCORE; EMPLOYMENT; HEALTH;
D O I
10.1080/02664763.2011.570323
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consistency of propensity score matching estimators hinges on the propensity score's ability to balance the distributions of covariates in the pools of treated and non-treated units. Conventional balance tests merely check for differences in covariates' means, but cannot account for differences in higher moments. For this reason, this paper proposes balance tests which test for differences in the entire distributions of continuous covariates based on quantile regression (to derive Kolmogorov-Smirnov and Cramer-von-Mises-Smirnov-type test statistics) and resampling methods (for inference). Simulations suggest that these methods are very powerful and capture imbalances related to higher moments when conventional balance tests fail to do so.
引用
收藏
页码:2881 / 2899
页数:19
相关论文
共 50 条
  • [21] COMPARISON OF RESAMPLING METHODS IN MULTIPLE LINEAR REGRESSION
    Zaman, Tolga
    Alakus, Kamil
    JOURNAL OF SCIENCE AND ARTS, 2019, (01): : 91 - 104
  • [22] Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem
    Lasota, Tadeusz
    Telec, Zbigniew
    Trawinski, Grzegorz
    Trawinski, Bogdan
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2011, 2011, 6936 : 17 - +
  • [23] Estimating nonlinear effects of fiscal policy using quantile regression methods
    Linnemann, Ludger
    Winkler, Roland
    OXFORD ECONOMIC PAPERS-NEW SERIES, 2016, 68 (04): : 1120 - 1145
  • [24] Empirical Comparison of Resampling Methods Using Genetic Neural Networks for a Regression Problem
    Lasota, Tadeusz
    Telec, Zbigniew
    Trawinski, Grzegorz
    Trawinski, Bogdan
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PART II, 2011, 6679 : 213 - +
  • [25] Flexible specification testing in quantile regression models
    Kutzker, Tim
    Klein, Nadja
    Wied, Dominik
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (01) : 355 - 383
  • [26] Signs of Residuals for Testing Coefficients in Quantile Regression
    Tarima, Sergey
    Tarassenko, Peter
    Tuyishimire, Bonifride
    Sparapani, Rodney
    Rein, Lisa
    Meurer, John
    STATISTICS AND SIMULATION, IWS 8 2015, 2018, 231 : 219 - 230
  • [27] Nonparametric testing of an exclusion restriction in quantile regression
    Li, Bo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (18) : 2877 - 2889
  • [28] Testing for parameter stability in quantile regression models
    Su, Liangjun
    Xiao, Zhijie
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (16) : 2768 - 2775
  • [29] Testing heterogeneity in quantile regression: a multigroup approach
    Cristina Davino
    Giuseppe Lamberti
    Domenico Vistocco
    Computational Statistics, 2024, 39 : 117 - 140
  • [30] Testing heterogeneity in quantile regression: a multigroup approach
    Davino, Cristina
    Lamberti, Giuseppe
    Vistocco, Domenico
    COMPUTATIONAL STATISTICS, 2024, 39 (01) : 117 - 140