Semiparametric regression analysis of multivariate longitudinal data with informative observation times

被引:2
|
作者
Deng, Shirong [1 ]
Liu, Kin-yat [2 ]
Zhao, Xingqiu [2 ,3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
关键词
Estimating equation; Informative observation times; Latent variable; Model checking; Multivariate longitudinal data; Semiparametric regression; PANEL COUNT DATA; NONPARAMETRIC REGRESSION; TRANSFORMATION MODELS;
D O I
10.1016/j.csda.2016.10.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Multivariate longitudinal data arises when subjects under study may experience several possible related response outcomes. This article proposed a new class of flexible semi parametric models for multivariate longitudinal data with informative observation times through latent variables and completely unspecified link functions, which allows for any functional forms of covariate effects on the intensity functions for the observation processes. A novel estimating equation approach that does not rely on forms of link functions and distributions of frailties is developed. The asymptotic properties for the resulting estimators and the model checking technique for the overall fit of the proposed models are established. The simulation results show that the proposed approach works well. The analysis of skin cancer chemoprevention trial data is provided for illustration. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 130
页数:11
相关论文
共 50 条
  • [41] Analyzing Longitudinal Data with Informative Observation and Terminal Event Times
    Miao, Rui
    Chen, Xin
    Sun, Liu-quan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (04): : 1035 - 1052
  • [42] Analyzing longitudinal data with informative observation and terminal event times
    Rui Miao
    Xin Chen
    Liu-quan Sun
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 1035 - 1052
  • [43] JOINT MODELING OF LONGITUDINAL DATA WITH INFORMATIVE OBSERVATION TIMES AND DROPOUTS
    Han, Miao
    Song, Xinyuan
    Sun, Liuquan
    Liu, Lei
    STATISTICA SINICA, 2014, 24 (04) : 1487 - 1504
  • [44] Semiparametric and nonparametric regression analysis of longitudinal data
    Lin, DY
    Ying, Z
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 103 - 113
  • [45] Semiparametric Regression Analysis of Longitudinal Skewed Data
    Lin, Huazhen
    Zhou, Ling
    Zhou, Xiaohua
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 1031 - 1050
  • [46] AUGMENTED ESTIMATING EQUATIONS FOR SEMIPARAMETRIC PANEL COUNT REGRESSION WITH INFORMATIVE OBSERVATION TIMES AND CENSORING TIME
    Wang, Xiaojing
    Ma, Shuangge
    Yan, Jun
    STATISTICA SINICA, 2013, 23 (01) : 359 - 381
  • [47] Semiparametric regression analysis of multivariate doubly censored data
    Li, Shuwei
    Hu, Tao
    Tong, Tiejun
    Sun, Jianguo
    STATISTICAL MODELLING, 2020, 20 (05) : 502 - 526
  • [48] Joint analysis of longitudinal data with additive mixed effect model for informative observation times
    Fang, Sha
    Zhang, Haixiang
    Sun, Liuquan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 169 : 43 - 55
  • [49] Semiparametric regression analysis on longitudinal pattern of recurrent gap times
    Chen, YQ
    Wang, MC
    Huang, YJ
    BIOSTATISTICS, 2004, 5 (02) : 277 - 290
  • [50] Semiparametric mixture regression for asynchronous longitudinal data using multivariate functional principal component analysis
    Lu, Ruihan
    Li, Yehua
    Yao, Weixin
    BIOSTATISTICS, 2025, 26 (01)