An Extremal Series of Eulerian Synchronizing Automata

被引:2
|
作者
Szykula, Marek [1 ]
Vorel, Vojtech [2 ]
机构
[1] Univ Wroclaw, Inst Comp Sci, Joliot Curie 15, Wroclaw, Poland
[2] Charles Univ Prague, Fac Math & Phys, Malostranske Nam 25, Prague, Czech Republic
来源
关键词
Eulerian automaton; Reset threshold; Reset word; Synchronizing automaton; CERNY CONJECTURE; RESET WORDS; LENGTH;
D O I
10.1007/978-3-662-53132-7_31
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an infinite series of n-state Eulerian automata whose reset words have length at least (n(2) - 3)/2. This improves the current lower bound on the length of shortest reset words in Eulerian automata. We conjecture that (n(2) - 3)/2 also forms an upper bound for this class and we experimentally verify it for small automata by an exhaustive computation.
引用
收藏
页码:380 / 392
页数:13
相关论文
共 50 条
  • [41] Synchronizing Bounded Partially Ordered Automata
    Cui Z.-H.
    He Y.
    Sun S.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (03): : 610 - 623
  • [42] PARTLY SYNCHRONIZING SEQUENCE FOR FINITE AUTOMATA
    SHARYSHEV, AA
    AVTOMATIKA I VYCHISLITELNAYA TEKHNIKA, 1978, (04): : 36 - 38
  • [43] SURFACE DIMENSION, TILES, AND SYNCHRONIZING AUTOMATA
    Protasov, Vladimir Yu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) : 3463 - 3486
  • [44] Extremal minimality conditions on automata
    Restivo, Antonio
    Vaglica, Roberto
    THEORETICAL COMPUTER SCIENCE, 2012, 440 : 73 - 84
  • [45] Automata with Extremal Minimality Conditions
    Restivo, Antonio
    Vaglica, Roberto
    DEVELOPMENTS IN LANGUAGE THEORY, 2010, 6224 : 399 - 410
  • [46] EXTREMAL AUTOMATA FOR IMAGE SHARPENING
    HERNANDEZ, G
    HERRMANN, HJ
    GOLES, E
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1994, 5 (06): : 923 - 931
  • [47] Complexities of Some Problems Related to Synchronizing, Non-Synchronizing and Monotonic Automata
    Turker, Uraz Cengiz
    Yenigun, Husnu
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2015, 26 (01) : 99 - 121
  • [48] Slowly synchronizing automata with zero and noncomplete sets
    E. V. Pribavkina
    Mathematical Notes, 2011, 90
  • [49] SYNCHRONIZING AUTOMATA: RESET STRINGS AND STATE COMPLEXITY
    Kelemenova, A.
    13TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI 2012), 2012, : 391 - 394
  • [50] Slowly synchronizing automata with fixed alphabet size
    Don, Henk
    Zantema, Hans
    de Bondt, Michiel
    INFORMATION AND COMPUTATION, 2021, 279