Modified Gravity Models Admitting Second Order Equations of Motion

被引:2
|
作者
Colleaux, Aimeric [1 ]
Zerbini, Sergio [1 ,2 ]
机构
[1] Trento Univ, Dept Phys, I-38123 Trento, Italy
[2] Ist Nazl Fis Nucl INFN Ctr, Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy
关键词
modified gravities; non-polynomial gravities; higher order corrections; regular cosmological solutions; FLRW space-times; static spherically-symmetric space-times; FIELD EQUATIONS; BIANCHI I;
D O I
10.3390/e17106643
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this paper is to find higher order geometrical corrections to the Einstein-Hilbert action that can lead only to second order equations of motion. The metric formalism is used, and static spherically-symmetric and Friedmann-Lemaitre space-times are considered, in four dimensions. The Fulling, King, Wybourne and Cummings (FKWC) basis is introduced in order to consider all of the possible invariant scalars, and both polynomial and non-polynomial gravities are investigated.
引用
收藏
页码:6643 / 6662
页数:20
相关论文
共 50 条
  • [31] Charged gravastar model in f(T) gravity admitting conformal motion
    Bhar, Piyali
    Rej, Pramit
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (07)
  • [32] Second-order Lagrangians admitting a first-order Hamiltonian formalism
    E. Rosado María
    J. Muñoz Masqué
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 357 - 397
  • [33] Second-order Lagrangians admitting a first-order Hamiltonian formalism
    Rosado Maria, E.
    Munoz Masque, J.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 357 - 397
  • [34] LINEARIZED RELATIVE ORBITAL MOTION DYNAMICS IN A ROTATING SECOND DEGREE AND ORDER GRAVITY FIELD
    Burnett, Ethan R.
    Butcher, Eric A.
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 3463 - 3482
  • [35] Second-order dispersion forces. I. Equations of motion
    Protsenko, IE
    Samoilov, VN
    Zaimidoroga, OA
    JOURNAL OF RUSSIAN LASER RESEARCH, 2001, 22 (01) : 23 - 36
  • [36] A SECOND ORDER WELL-BALANCED FINITE VOLUME SCHEME FOR EULER EQUATIONS WITH GRAVITY
    Chandrashekar, Praveen
    Klingenberg, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03): : B382 - B402
  • [37] Tensor-multiscalar gravity: Equations of motion to 2.5 post-Newtonian order
    Schoen, Oliver
    Doneva, Daniela D.
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [38] Equivalent equations of motion for gravity and entropy
    Bartlomiej Czech
    Lampros Lamprou
    Samuel McCandlish
    Benjamin Mosk
    James Sully
    Journal of High Energy Physics, 2017
  • [39] Equivalent equations of motion for gravity and entropy
    Czech, Bartlomiej
    Lamprou, Lampros
    McCandlish, Samuel
    Mosk, Benjamin
    Sully, James
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (02):
  • [40] Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras
    Gainetdinova, A. A.
    Gazizov, R. K.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2197):