Elastic Element Integration for Improved Flapping-Wing Micro Air Vehicle Performance

被引:40
|
作者
Sahai, Ranjana [1 ,2 ]
Galloway, Kevin C. [1 ,2 ]
Wood, Robert J. [1 ,2 ]
机构
[1] Harvard Univ, Harvard Microrobot Lab, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
关键词
Biologically inspired robots; flapping wing; mechanism design; microrobots; DESIGN; MECHANISM;
D O I
10.1109/TRO.2012.2218936
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper studies flapping-wing micro air vehicles (FWMAV) whose transmission mechanisms use flexures as energy storage elements to reduce needed input power. A distinguishing feature of the proposed four-bar mechanism is the use of rubber-based flexures in two of its joints. These lightweight and compact flexures have been used for the first time in the design of an FWMAV whose projected total weight is approximately 3 g. This paper discusses in detail how the flexures were designed and how the challenges associated with their fabrication were met. Flexure stiffnesses were chosen based upon a simple, computationally efficient model of the four-bar mechanism actuated by an electric motor to flap two wings at 18 Hz. An instrumented test stand was designed to easily replace the upper part of the four-bar flexure mechanism and wings, and it was used to experimentally determine the power savings associated with flexures of different stiffnesses. While the measured power savings (maximum of 20%) may seem modest, they were nevertheless significant, considering that the use of the rubber-based flexures produced approximately 0.3 g added thrust at a less than 1% cost in weight (0.02 g).
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [1] A Flapping-Wing Micro Air Vehicle with Interchangeable Parts for System Integration Studies
    Sahai, Ranjana
    Galloway, Kevin C.
    Karpelson, Michael
    Wood, Robert J.
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 501 - 506
  • [2] Dove: A biomimetic flapping-wing micro air vehicle
    Yang, Wenqing
    Wang, Liguang
    Song, Bifeng
    [J]. INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES, 2018, 10 (01) : 70 - 84
  • [3] Development of Flapping-wing Micro Air Vehicle in Asia
    Tan, Xiaobo
    Zhang, Weiping
    Ke, Xijun
    Chen, Wenyuan
    Zou, Caijun
    Liu, Wu
    Cui, Feng
    Wu, Xiaosheng
    Li, Hongyi
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 3939 - 3942
  • [4] Effects of camber angle on aerodynamic performance of flapping-wing micro air vehicle
    Yoon, Sang-Hoon
    Cho, Haeseong
    Lee, Junhee
    Kim, Chongam
    Shin, Sang-Joon
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2020, 97
  • [5] Development and testing of the mentor flapping-wing micro air vehicle
    Zdunich, Patrick
    Bilyk, Derek
    MacMaster, Marc
    Loewen, David
    DeLaurier, James
    Kornbluh, Roy
    Low, Tom
    Stanford, Scott
    Holeman, Dennis
    [J]. JOURNAL OF AIRCRAFT, 2007, 44 (05): : 1701 - 1711
  • [6] The design and micromachining of an electromagnetic MEMS flapping-wing micro air vehicle
    Kun Meng
    Weiping Zhang
    Wenyuan Chen
    Hongyi Li
    Pengcheng Chi
    Caijun Zou
    Xiaosheng Wu
    Feng Cui
    Wu Liu
    Jinge Chen
    [J]. Microsystem Technologies, 2012, 18 : 127 - 136
  • [7] The design and micromachining of an electromagnetic MEMS flapping-wing micro air vehicle
    Meng, Kun
    Zhang, Weiping
    Chen, Wenyuan
    Li, Hongyi
    Chi, Pengcheng
    Zou, Caijun
    Wu, Xiaosheng
    Cui, Feng
    Liu, Wu
    Chen, Jinge
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2012, 18 (01): : 127 - 136
  • [8] Computational and Experimental Investigation of a Flapping-Wing Micro Air Vehicle in Hover
    Badrya, Camli
    Govindarajan, Bharath
    Baeder, James D.
    Harrington, Aaron
    Kroninger, Christopher M.
    [J]. JOURNAL OF AIRCRAFT, 2019, 56 (04): : 1610 - 1625
  • [9] Wing Design, Fabrication, and Analysis for an X-Wing Flapping-Wing Micro Air Vehicle
    Cheaw, Boon Hong
    Ho, Hann Woei
    Abu Bakar, Elmi
    [J]. DRONES, 2019, 3 (03) : 1 - 21
  • [10] Numerical Simulation of a Flexible X-Wing Flapping-Wing Micro Air Vehicle
    Deng, S.
    Percin, M.
    van Oudheusden, B. W.
    Bijl, H.
    Remes, B.
    Xiao, T.
    [J]. AIAA JOURNAL, 2017, 55 (07) : 2295 - 2306