HIERARCHICAL SPARSE BRAIN NETWORK ESTIMATION

被引:0
|
作者
Seghouane, Abd-Krim [1 ]
Khalid, Muhammad Usman [1 ]
机构
[1] Australian Natl Univ, Natl ICT Australia, Canberra Res Lab, Coll Engn & Comp Sci, Canberra, ACT, Australia
关键词
functional MRI; partial correlation; brain network; hierarchy; sparsity; KULLBACK-LEIBLER DIVERGENCE; MODEL SELECTION; FMRI DATA; FUNCTIONAL CONNECTIVITY; REGRESSION; ARCHITECTURE; CRITERION; MRI;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain networks explore the dependence relationships between brain regions under consideration through the estimation of the precision matrix. An approach based on linear regression is adopted here for estimating the partial correlation matrix from functional brain imaging data. Knowing that brain networks are sparse and hierarchical, the l(1)-norm penalized regression has been used to estimate sparse brain networks. Although capable of including the sparsity information, the l(1)-norm penalty alone doesn't incorporate the hierarchical structure prior information when estimating brain networks. In this paper, a new l(1) regularization method that applies the sparsity constraint at hierarchical levels is proposed and its implementation described. This hierarchical sparsity approach has the advantage of generating brain networks that are sparse at all levels of the hierarchy. The performance of the proposed approach in comparison to other existing methods is illustrated on real fMRI data.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Brain Rhythms Reveal a Hierarchical Network Organization
    Steinke, G. Karl
    Galan, Roberto F.
    PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (10)
  • [22] On Brain-inspired Hierarchical Network Topologies
    Beiu, Valeriu
    Madappuram, Basheer A. M.
    Kelly, Peter M.
    McDaid, Liam J.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 202 - 205
  • [23] Evolutionary Hierarchical Sparse Extreme Learning Autoencoder Network for Object Recognition
    Zeng, Yujun
    Qian, Lilin
    Ren, Junkai
    SYMMETRY-BASEL, 2018, 10 (10):
  • [24] Sparse Brain Network Recovery Under Compressed Sensing
    Lee, Hyekyoung
    Lee, Dong Soo
    Kang, Hyejin
    Kim, Boong-Nyun
    Chung, Moo K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (05) : 1154 - 1165
  • [25] Sparse brain network using penalized linear regression
    Lee, Hyekyoung
    Lee, Dong Soo
    Kang, Hyejin
    Kim, Boong-Nyun
    Chung, Moo K.
    MEDICAL IMAGING 2011: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2011, 7965
  • [26] Hierarchical classification of speaker and background noise and estimation of SNR using sparse representation
    Girish, K. V. Vijay
    Ramakrishnan, A. G.
    Ananthapadmanabha, T. V.
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 2972 - 2976
  • [27] Hierarchical Graph Neural Network for Human Pose Estimation
    Zheng, Guanghua
    Zhao, Zhongqiu
    Zhang, Zhao
    Yang, Yi
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2663 - 2668
  • [28] Hierarchical video motion estimation using a neural network
    Skrzypkowiak, SS
    Jain, VK
    SECOND INTERNATIONAL WORKSHOP ON DIGITAL AND COMPUTATIONAL VIDEO, PROCEEDINGS, 2001, : 202 - 208
  • [29] PERFORMANCE ESTIMATION FOR A PARALLEL SYSTEM WITH A HIERARCHICAL SWITCH NETWORK
    KOLP, O
    PARALLEL COMPUTING, 1994, 20 (10-11) : 1613 - 1626
  • [30] On the estimation of brain signal entropy from sparse neuroimaging data
    Thomas H. Grandy
    Douglas D. Garrett
    Florian Schmiedek
    Markus Werkle-Bergner
    Scientific Reports, 6