Van Hove function for diffusion in zeolites

被引:15
|
作者
Gaub, M
Fritzsche, S
Haberlandt, R
Theodorou, DN
机构
[1] Univ Leipzig, Fak Phys & Geowissensch, D-04103 Leipzig, Germany
[2] Univ Patras, Dept Chem Engn, GR-26500 Patras, Greece
[3] Democritos Natl Res Ctr Phys Sci, Mol Modelling Mat Grp, GR-15310 Athens, Greece
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1999年 / 103卷 / 22期
关键词
D O I
10.1021/jp984177f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An approximation for the self-part of the van Hove function is derived. The self-part of the van Hove function is calculated by MD simulation for the diffusion of methane in ZK4 and silicalite and compared with the approximation. Fourier transform in space of the van Hove function yields the intermediate scattering function, the decay of which is used to determine the self-diffusion coefficient. Fourier transform in time yields the dynamic structure factor which can be compared with quasi-elastic neutron scattering results.
引用
收藏
页码:4721 / 4729
页数:9
相关论文
共 50 条
  • [41] Impurity states in van Hove superconductors
    I. Tifrea
    M. Crisan
    Journal of Superconductivity, 1997, 10 : 127 - 130
  • [42] Optical Conductivity in the van Hove Scenario
    I. Tifrea
    M. Crisan
    Journal of Superconductivity, 1998, 11 : 277 - 278
  • [43] Impurity states in van Hove superconductors
    Tifrea, I
    Crisan, M
    JOURNAL OF SUPERCONDUCTIVITY, 1997, 10 (02): : 127 - 130
  • [44] van Hove scenario for cuprate superconductivity
    Newns, D.M., 1600, Publ by Elsevier Science Publishers B.V., Amsterdam, Netherlands (186-88):
  • [45] Non-Gaussianity of the van Hove function and dynamic-heterogeneity length scale
    Bhowmik, Bhanu Prasad
    Tah, Indrajit
    Karmakar, Smarajit
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [46] Identification of van Hove singularities in the GaN dielectric function: a comparison of the cubic and hexagonal phase
    Cobet, C.
    Goldhahn, R.
    Richter, W.
    Esser, N.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (07): : 1440 - 1449
  • [47] THEORY OF SELF-DIFFUSION IN CLASSICAL FLUIDS - VAN-HOVE SELF-CORRELATION FUNCTION G8(R,T)
    AKCASU, AZ
    CORNGOLD, N
    DUDERSTA.JJ
    PHYSICS OF FLUIDS, 1970, 13 (09) : 2213 - +
  • [48] One-dimensional Van Hove polaritons
    Arnardottir, K. B.
    Kyriienko, O.
    Portnoi, M. E.
    Shelykh, I. A.
    PHYSICAL REVIEW B, 2013, 87 (12)
  • [49] Resonance Van Hove singularities in wave kinetics
    Shi, Yi-Kang
    Eyink, Gregory L.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 332 : 55 - 72
  • [50] Nonadiabatic superconductivity: The role of van Hove singularities
    Cappelluti, E
    Pietronero, L
    PHYSICAL REVIEW B, 1996, 53 (02): : 932 - 944