Evaluation of random forest method for agricultural crop classification

被引:150
|
作者
Ok, Asli Ozdarici [2 ]
Akar, Ozlem [1 ]
Gungor, Oguz [1 ]
机构
[1] Karadeniz Tech Univ, Dept Geomat, Div Remote Sensing, TR-61080 Trabzon, Turkey
[2] Yuzuncu Yil Univ, TR-65080 Van, Turkey
关键词
RF; MLC; SPOT; 5; Agriculture; Accuracy Assessment; COVER; SEGMENTATION;
D O I
10.5721/EuJRS20124535
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study aims to examine the performance of Random Forest (RF) and Maximum Likelihood Classification (MLC) method to crop classification through pixel-based and parcel-based approaches. Analyses are performed on multispectral SPOT 5 image. First, the SPOT 5 image is classified using the classification methods in pixel-based manner. Next, the produced thematic maps are overlaid with the original agricultural parcels and the frequencies of the pixels within the parcels are computed. Then, the majority of the pixels are assigned as class label to the parcels. Results indicate that the overall accuracies of the parcel-based approach computed for the Random Forest method is 85.89%, which is about 8% better than the corresponding result of MLC.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 50 条
  • [31] Vertebral Degenerative Disc Disease Severity Evaluation Using Random Forest Classification
    Munoz, Hector E.
    Yao, Jianhua
    Burns, Joseph E.
    Pham, Yasuyuki
    Stieger, James
    Summers, Ronald M.
    [J]. MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035
  • [32] CHIRPS: Explaining random forest classification
    Hatwell, Julian
    Gaber, Mohamed Medhat
    Azad, R. Muhammad Atif
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (08) : 5747 - 5788
  • [33] Tailoring Random Forest for Requirements Classification
    Falkner, Andreas
    Schenner, Gottfried
    Schoerghuber, Alexander
    [J]. FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2020), 2020, 12117 : 405 - 412
  • [34] Classification of Cardiotocography Records by Random Forest
    Tomas, Peterek
    Krohova, Jana
    Dohnalek, Pavel
    Gajdos, Petr
    [J]. 2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 620 - 623
  • [35] CHIRPS: Explaining random forest classification
    Julian Hatwell
    Mohamed Medhat Gaber
    R. Muhammad Atif Azad
    [J]. Artificial Intelligence Review, 2020, 53 : 5747 - 5788
  • [36] Classification of Keyphrases using Random Forest
    Tovar Vidal, Mireya
    Flores Petlacalco, Gerardo
    Montes Rendon, Azucena
    Contreras Gonzalez, Meliza
    Cervantes Marquez, Ana Patricia
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 506 - 511
  • [37] Pattern classification with random decision forest
    Wang, Honghai
    [J]. 2012 INTERNATIONAL CONFERENCE ON INDUSTRIAL CONTROL AND ELECTRONICS ENGINEERING (ICICEE), 2012, : 128 - 130
  • [38] Classification using Probabilistic Random Forest
    Gondane, Rajhans
    Devi, V. Susheela
    [J]. 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 174 - 179
  • [39] Seed classification with random forest models
    Reek, Josephine Elena
    Hille Ris Lambers, Janneke
    Perret, Eleonore
    Chin, Alana R. O.
    [J]. APPLICATIONS IN PLANT SCIENCES, 2024, 12 (03):
  • [40] Texture Classification Using Random Forest
    Razooq, Mohammed M.
    Nordin, Md Jan
    [J]. ADVANCED SCIENCE LETTERS, 2014, 20 (10-12) : 1918 - 1921