Best constants in multiplicative inequalities for sup-norms

被引:22
|
作者
Ilyin, AA [1 ]
机构
[1] MV Keldysh Appl Math Inst, Moscow 125047, Russia
关键词
D O I
10.1112/S002461079800653X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper finds best constants in a class of multiplicative inequalities with one-dimensional spatial variables \\f((k))\\(infinity) less than or equal to c(k, l) \\f\\((2l - 2k - 1)\2l)\\f((l))((2k + 1)/2l) -1/2 < k < l - 1/2 where f is a periodic function with zero mean value, and the norms in the right-hand side of the expression are the L-g-norms.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 50 条