The Bethe ansatz and the Tzitzeica-Bullough-Dodd equation

被引:32
|
作者
Dorey, Patrick [1 ]
Faldella, Simone [2 ]
Negro, Stefano [3 ,4 ]
Tateo, Roberto [3 ,4 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ Bourgogne, Inst Math Bourgogne, F-21078 Dijon, France
[3] Univ Torino, Dip Fis Teor, I-10125 Turin, Italy
[4] Univ Torino, Ist Nazl Fis Nucl, I-10125 Turin, Italy
关键词
spectral problems; affine Toda field theory; Bethe ansatz; ANISOTROPIC HEISENBERG CHAIN; CONFORMAL FIELD-THEORY; INTEGRABLE STRUCTURE; LATTICE STATISTICS; 8-VERTEX MODEL; ANHARMONIC-OSCILLATORS; STOKES MULTIPLIERS; ISING-MODEL; REALITY; MATRIX;
D O I
10.1098/rsta.2012.0052
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The theory of classically integrable nonlinear wave equations and the Bethe ansatz systems describing massive quantum field theories defined on an infinite cylinder are related by an important mathematical correspondence that still lacks a satisfactory physical interpretation. In this paper, we shall extend this link to the case of the classical and quantum versions of the Tzitzeica-Bullough-Dodd model.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] New traveling-wave solutions for a nonlinear Dodd-Bullough-Mikhailov equation
    Tariq, Kalim U.
    Liu, Jian-Guo
    Nisar, Sana
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8808 - 8824
  • [42] Dynamic matrix product ansatz and Bethe ansatz equation for asymmetric exclusion process with periodic boundary
    Sasamoto, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (02) : 279 - 282
  • [43] AN INTRODUCTION TO THE BETHE ANSATZ
    SUTHERLAND, B
    LECTURE NOTES IN PHYSICS, 1985, 242 : 1 - 95
  • [44] PERIMETER BETHE ANSATZ
    BAXTER, RJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09): : 2557 - 2567
  • [45] Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd–Bullough–Mikhailov equation
    O A Ilhan
    H Bulut
    T A Sulaiman
    H M Baskonus
    Indian Journal of Physics, 2018, 92 : 999 - 1007
  • [46] Introduction to the Bethe ansatz
    Karabach, M
    Muller, G
    COMPUTERS IN PHYSICS, 1997, 11 (01): : 36 - 43
  • [47] Asymmetric Bethe Ansatz
    Jackson, Steven G.
    Perrin, Helene
    Astrakharchik, Gregory E.
    Olshanii, Maxim
    SCIPOST PHYSICS CORE, 2024, 7 (03):
  • [49] On a long range variant of the discrete NLS equation and algebraic Bethe ansatz
    Choudhury, AG
    Chowdhury, AR
    PHYSICA SCRIPTA, 1996, 53 (02): : 129 - 132
  • [50] Bethe ansatz and ordinary differential equation correspondence for degenerate Gaudin models
    El Araby, Omar
    Gritsev, Vladimir
    Faribault, Alexandre
    PHYSICAL REVIEW B, 2012, 85 (11)