This paper proposes an efficient, bi-convex, fuzzy, variational (BFV) method with teaching and learning based optimization (TLBO) for geometric image segmentation. Firstly, we adopt a bi-convex, object function to process a geometric image. Then, we introduce TLBO to maximally optimize the length-penalty item, which will be changed under the teaching phase and the learner phase of the TLBO. This makes the length penalty item closer to the target boundary. Therefore, the length-penalty item can be automatically adjusted according to the fitness function, namely the evaluation standards of the image quality. At last, we combine the length-penalty item with the numerical remedy mechanism to achieve better results. Compared with existing methods, simulations show that our method is more effective.
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Wu, Bo
Zhou, Jianxin
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Zhou, Jianxin
Ji, Xiaoyuan
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Ji, Xiaoyuan
Yin, Yajun
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
Yin, Yajun
Shen, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China