Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system

被引:39
|
作者
Ray, S. Saha [1 ]
Patra, A. [1 ]
机构
[1] Natl Inst Technol, Dept Math, Rourkela 769008, India
关键词
Haar wavelets; Operational matrix; Block pulse function; Van der Pol equation; Fractional derivative; MATRIX;
D O I
10.1016/j.amc.2013.07.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an efficient numerical method for the solution of nonlinear damped Van der Pol equation based on the Haar wavelets approach is proposed. The proposed scheme can be used for solving one of the widely studied and challenging equation in nonlinear dynamics like the damped Van der Pol equation. We have applied a numerical procedure involving haar series for the highest order of derivative. Moreover the numerical result shows that the proposed mechanism is quite reasonable when compare to exact solution. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:659 / 667
页数:9
相关论文
共 50 条
  • [21] Dynamics of the fractional-order Van der Pol oscillator
    Barbosa, RS
    Machado, JAT
    Ferreira, IM
    Tar, JK
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 373 - 378
  • [22] Numerical solution to the van der Pol equation with fractional damping
    Konuralp, Ali
    Konuralp, Cigdem
    Yildirim, Ahmet
    PHYSICA SCRIPTA, 2009, T136
  • [23] Algorithm for the Numerical Solutions of Volterra Population Growth Model with Fractional Order via Haar Wavelet
    Amin, Rohul
    Yuzbasi, Suayip
    Gao, Liping
    Asif, Muhammad
    Khan, Imran
    CONTEMPORARY MATHEMATICS, 2020, 1 (02): : 102 - 111
  • [24] Analysis of fractional order Bonhoeffer-van der Pol oscillator
    Gafiychuk, V.
    Datsko, B.
    Meleshko, V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (2-3) : 418 - 424
  • [25] Analysis of the van der pol oscillator containing derivatives of fractional order
    Barbosa, Ramiro S.
    Machado, J. A. Tenreiro
    Vinagre, B. M.
    Calderon, A. J.
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1291 - 1301
  • [26] Anticontrol of chaos of the fractional order modified van der Pol systems
    Ge, Zheng-Ming
    Zhang, An-Ray
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1161 - 1172
  • [27] Primary resonance of fractional-order van der Pol oscillator
    Shen, Yong-Jun
    Wei, Peng
    Yang, Shao-Pu
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1629 - 1642
  • [28] Stochastic response of fractional-order van der Pol oscillator
    Chen, Lincong
    Zhu, Weiqiu
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2014, 4 (01)
  • [29] Chaos in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 603 - 608
  • [30] Stochastic response of fractional-order van der Pol oscillator
    Lincong Chen
    Weiqiu Zhu
    Theoretical & Applied Mechanics Letters, 2014, 4 (01) : 74 - 78