Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system

被引:39
|
作者
Ray, S. Saha [1 ]
Patra, A. [1 ]
机构
[1] Natl Inst Technol, Dept Math, Rourkela 769008, India
关键词
Haar wavelets; Operational matrix; Block pulse function; Van der Pol equation; Fractional derivative; MATRIX;
D O I
10.1016/j.amc.2013.07.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an efficient numerical method for the solution of nonlinear damped Van der Pol equation based on the Haar wavelets approach is proposed. The proposed scheme can be used for solving one of the widely studied and challenging equation in nonlinear dynamics like the damped Van der Pol equation. We have applied a numerical procedure involving haar series for the highest order of derivative. Moreover the numerical result shows that the proposed mechanism is quite reasonable when compare to exact solution. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:659 / 667
页数:9
相关论文
共 50 条
  • [1] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Munjam, Shankar Rao
    Seshadri, Rajeswari
    NONLINEAR DYNAMICS, 2019, 95 (04) : 2837 - 2854
  • [2] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Shankar Rao Munjam
    Rajeswari Seshadri
    Nonlinear Dynamics, 2019, 95 : 2837 - 2854
  • [3] Parameter Identification of Fractional Order Nonlinear System Based on Haar Wavelet Operational Matrix
    Li, Yuanlu
    Jiang, Min
    Li, Jun
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2017), 2017, 153 : 5 - 9
  • [4] Efficient numerical simulation of fractional-order Van der Pol impulsive system
    Sharifi, Z.
    Moghaddam, B. P.
    Ilie, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (03):
  • [5] An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (5-6) : 1782 - 1786
  • [6] Approximate solutions of the fractional damped nonlinear oscillator subject to Van der Pol system
    Zhang, Yanni
    Zhao, Zhen
    Pang, Jing
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2023, 42 (03) : 1312 - 1318
  • [7] Numerical behavior of the variable-order fractional Van der Pol oscillator
    Ramroodi, N.
    Tehrani, H. Ahsani
    Skandari, M. H. Noori
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 74
  • [8] Chaos in a generalized van der Pol system and in its fractional order system
    Ge, Zheng-Ming
    Hsu, Mao-Yuan
    CHAOS SOLITONS & FRACTALS, 2007, 33 (05) : 1711 - 1745
  • [10] Haar wavelet operational matrix method for the numerical solution of fractional order differential equations
    Department of Mathematics, University of Kashmir, South Campus Anantnag, Jammu and Kashmir
    192 101, India
    不详
    185234, India
    Nonlenier Eng., 4 (203-213):