Goodness-of-fit tests for Pareto distribution

被引:9
|
作者
Gulati, Sneh [1 ]
Shapiro, Samuel [1 ]
机构
[1] Florida Int Univ, Dept Stat, Miami, FL 33199 USA
来源
STATISTICAL MODELS AND METHODS FOR BIOMEDICAL AND TECHNICAL SYSTEMS | 2008年
关键词
type I Pareto distribution; type II Pareto distribution; regression tests; extreme values;
D O I
10.1007/978-0-8176-4619-6_19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Pareto distribution can serve to model several types of datasets, especially those arising in the insurance industry. In this chapter, we present methods to test the hypothesis that the underlying data come from a Pareto distribution. The tests presented for both the type I and type II Pareto distributions are based on the regression test of Brain and Shapiro (1983) for the exponential distribution. Power comparisons of the tests are carried out via simulations.
引用
收藏
页码:259 / 274
页数:16
相关论文
共 50 条
  • [31] TESTS FOR A GOODNESS-OF-FIT WITH RANDOM CELLS FOR CONDITIONAL DISTRIBUTION
    KWEI, L
    BIOMETRICS, 1983, 39 (04) : 1118 - 1118
  • [32] Powerful goodness-of-fit tests for the extreme value distribution
    Fard, Mir Nabi Pirouzi
    Holmquist, Bjorn
    CHILEAN JOURNAL OF STATISTICS, 2013, 4 (01): : 55 - 67
  • [33] Recent and classical goodness-of-fit tests for the Poisson distribution
    Gürtler, N
    Henze, N
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 90 (02) : 207 - 225
  • [34] Goodness-of-fit tests for the error distribution in nonparametric regression
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (08) : 1942 - 1951
  • [35] A Comparative Study of Goodness-of-Fit Tests for the Laplace Distribution
    Batsidis, Apostolos
    Economou, Polychronis
    Bar-Lev, Shaul K.
    AUSTRIAN JOURNAL OF STATISTICS, 2022, 51 (02) : 91 - 123
  • [36] Modified goodness-of-fit tests for the inverse Gaussian distribution
    Gunes, H
    Dietz, DC
    Auclair, PF
    Moore, AH
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (01) : 63 - 77
  • [37] Goodness-of-Fit Tests Based on a Characterization of Logistic Distribution
    Nikitin, Ya. Yu.
    Ragozin, I. A.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2019, 52 (02) : 169 - 177
  • [38] Goodness-of-fit tests for uniformity of probability distribution law
    Lemeshko B.Y.
    Blinov P.Y.
    Lemeshko S.B.
    Optoelectronics, Instrumentation and Data Processing, 2016, 52 (02) : 128 - 140
  • [39] Some New Goodness-of-fit Tests for Rayleigh Distribution
    Jahanshahi, S. M. A.
    Habibirad, A.
    Fakoor, V
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (02) : 305 - 315
  • [40] Analogues of Classical Goodness-of-Fit Tests for Distribution Tails
    Kantonistova, E. O.
    Rodionov, I., V
    DOKLADY MATHEMATICS, 2021, 103 (01) : 35 - 38