Out-of-Distribution Identification: Let Detector Tell Which I Am Not Sure

被引:1
|
作者
Li, Ruoqi [1 ]
Zhang, Chongyang [1 ,2 ]
Zhou, Hao [1 ]
Shi, Chao [1 ]
Luo, Yan [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, MoE Key Lab Artificial Intelligence, AI Inst, Shanghai 200240, Peoples R China
来源
基金
国家重点研发计划;
关键词
Out-of-distribution; Identification; Object detection;
D O I
10.1007/978-3-031-20080-9_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The superior performance of object detectors is often established under the condition that the test samples are in the same distribution as the training data. However, in most practical applications, out-of-distribution (OOD) instances are inevitable and usually lead to detection uncertainty. In this work, the Feature structured OOD-IDentification (FOOD-ID) model is proposed to reduce the uncertainty of detection results by identifying the OOD instances. Instead of outputting each detection result directly, FOOD-ID uses a likelihood-based measuring mechanism to identify whether the feature satisfies the corresponding class distribution and outputs the OOD results separately. Specifically, the clustering-oriented feature structuration is firstly developed using class-specified prototypes and Attractive-Repulsive loss for more discriminative feature representation and more compact distribution. With the structured features space, the density distribution of all training categories is estimated based on a class-conditional normalizing flow, which is then used for the OOD identification in the test stage. The proposed FOOD-ID can be easily applied to various object detectors including anchor-based frameworks and anchor-free frameworks. Extensive experiments on the PASCAL VOC-IO dataset and an industrial defect dataset demonstrate that FOOD-ID achieves satisfactory OOD identification performance, with which the certainty of detection results is improved significantly.
引用
收藏
页码:638 / 654
页数:17
相关论文
共 26 条