Quantum dot version of topological phase: Half-integer orbital angular momenta

被引:5
|
作者
Mur, V. D. [1 ]
Narozhny, N. B. [1 ]
Petrosyan, A. N. [1 ]
Lozovik, Yu. E. [2 ]
机构
[1] Moscow Engn Phys Inst, Moscow 115409, Russia
[2] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0021364008220116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that there exists a topological phase equal to pi for circular quantum dots with an odd number of electrons. The non-zero value of the topological phase is explained by axial symmetry and two-dimensionality of the system. Its particular value (pi) is fixed by the Pauli exclusion principle and leads to half-integer values for the eigenvalues of the orbital angular momentum. Our conclusions agree with the experimental results of T. Schmidt et al., Phys. Rev. B 51, 5570 (1995), which can be considered as the first experimental evidence for the existence of the new topological phase and half-integer quantization of the orbital angular momentum in a system of an odd number of electrons in circular quantum dots.
引用
收藏
页码:688 / 692
页数:5
相关论文
共 50 条
  • [31] Phase cycling in MQMAS sequences for half-integer quadrupole spins
    Hajjar, Redouane
    Millot, Yannick
    Man, Pascal P.
    [J]. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2010, 57 (03) : 306 - 342
  • [32] The sixteenfold way and the quantum Hall effect at half-integer filling factors
    Ma, Ken K. W.
    Feldman, D. E.
    [J]. PHYSICAL REVIEW B, 2019, 100 (03)
  • [33] Conductance quantization at a half-integer plateau in a symmetric GaAs quantum wire
    Crook, R.
    Prance, J.
    Thomas, K. J.
    Chorley, S. J.
    Farrer, I.
    Ritchie, D. A.
    Pepper, M.
    Smith, C. G.
    [J]. SCIENCE, 2006, 312 (5778) : 1359 - 1362
  • [34] Pfaffian paired states for half-integer fractional quantum Hall effect
    Milovanovic, M., V
    Djurdjevic, S.
    Vucicevic, J.
    Antonic, L.
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (21):
  • [35] COMPOSITE SYSTEM OF 3 RELATIVISTIC PARTICLES WITH HALF-INTEGER TOTAL ANGULAR-MOMENTUM
    DOMINICI, D
    [J]. LETTERE AL NUOVO CIMENTO, 1979, 24 (16): : 551 - 557
  • [36] Integer and half-integer flux-quantum transitions in a niobium-iron pnictide loop
    Chen C.-T.
    Tsuei C.C.
    Ketchen M.B.
    Ren Z.-A.
    Zhao Z.X.
    [J]. Nature Physics, 2010, 6 (4) : 260 - 264
  • [37] HALF-INTEGER AND INTEGER QUANTUM-FLUX PERIODS IN THE MAGNETORESISTANCE OF ONE-DIMENSIONAL RINGS
    DAMATO, JL
    PASTAWSKI, HM
    WEISZ, JF
    [J]. PHYSICAL REVIEW B, 1989, 39 (06) : 3554 - 3562
  • [38] Topological phase evolving from the orbital angular momentum of 'coiled' quantum vortices
    Alexeyev, C. N.
    Yavorsky, M. A.
    [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (09): : 752 - 758
  • [39] Integer and half-integer flux-quantum transitions in a niobium-iron pnictide loop
    Chen, C. -T.
    Tsuei, C. C.
    Ketchen, M. B.
    Ren, Z. -A.
    Zhao, Z. X.
    [J]. NATURE PHYSICS, 2010, 6 (04) : 260 - 264
  • [40] Integer and half-integer quantum Hall effect in silicene: Influence of an external electric field and impurities
    Shakouri, Kh.
    Vasilopoulos, P.
    Vargiamidis, V.
    Peeters, F. M.
    [J]. PHYSICAL REVIEW B, 2014, 90 (23)