Quantum dot version of topological phase: Half-integer orbital angular momenta

被引:5
|
作者
Mur, V. D. [1 ]
Narozhny, N. B. [1 ]
Petrosyan, A. N. [1 ]
Lozovik, Yu. E. [2 ]
机构
[1] Moscow Engn Phys Inst, Moscow 115409, Russia
[2] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0021364008220116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that there exists a topological phase equal to pi for circular quantum dots with an odd number of electrons. The non-zero value of the topological phase is explained by axial symmetry and two-dimensionality of the system. Its particular value (pi) is fixed by the Pauli exclusion principle and leads to half-integer values for the eigenvalues of the orbital angular momentum. Our conclusions agree with the experimental results of T. Schmidt et al., Phys. Rev. B 51, 5570 (1995), which can be considered as the first experimental evidence for the existence of the new topological phase and half-integer quantization of the orbital angular momentum in a system of an odd number of electrons in circular quantum dots.
引用
收藏
页码:688 / 692
页数:5
相关论文
共 50 条
  • [1] Quantum dot version of topological phase: Half-integer orbital angular momenta
    V. D. Mur
    N. B. Narozhny
    A. N. Petrosyan
    Yu. E. Lozovik
    [J]. JETP Letters, 2008, 88
  • [2] Topological Phase and Half-Integer Orbital Angular Momenta in Circular Quantum Dots
    V. M. Kuleshov
    V. D. Mur
    N. B. Narozhny
    Yu. E. Lozovik
    [J]. Few-Body Systems, 2016, 57 : 1103 - 1126
  • [3] Topological Phase and Half-Integer Orbital Angular Momenta in Circular Quantum Dots
    Kuleshov, V. M.
    Mur, V. D.
    Narozhny, N. B.
    Lozovik, Yu. E.
    [J]. FEW-BODY SYSTEMS, 2016, 57 (12) : 1103 - 1126
  • [4] Particle in a Mobius wire and half-integer orbital angular momentum
    Miliordos, Evangelos
    [J]. PHYSICAL REVIEW A, 2011, 83 (06):
  • [5] Integer versus half-integer angular momentum
    Gatland, IR
    [J]. AMERICAN JOURNAL OF PHYSICS, 2006, 74 (03) : 191 - 192
  • [6] Half-Integer Quantized Topological Response in Quasiperiodically Driven Quantum Systems
    Crowley, P. J. D.
    Martin, I
    Chandran, A.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (10)
  • [7] Integer and half-integer quantization conditions in quantum mechanics
    Duan, YS
    Jia, DJ
    [J]. CHINESE PHYSICS LETTERS, 2001, 18 (04) : 473 - 475
  • [8] Field configurations with half-integer angular momentum in purely bosonic theories without topological charge
    Vachaspati, T
    [J]. PHYSICS LETTERS B, 1998, 427 (3-4) : 323 - 326
  • [9] Half-integer quantum Hall effect of disordered Dirac fermions at a topological insulator surface
    Koenig, E. J.
    Ostrovsky, P. M.
    Protopopov, I. V.
    Gornyi, I. V.
    Burmistrov, I. S.
    Mirlin, A. D.
    [J]. PHYSICAL REVIEW B, 2014, 90 (16):
  • [10] Quantum tunneling in half-integer spin systems
    Miyashita, S
    Nagaosa, N
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2001, 106 (03): : 533 - 549