The support vector machine based on intuitionistic fuzzy number and kernel function

被引:55
|
作者
Ha, Minghu [1 ]
Wang, Chao [2 ]
Chen, Jiqiang [1 ]
机构
[1] Hebei Univ Engn, Coll Sci, Handan 056038, Peoples R China
[2] Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Support vector machine; Intuitionistic fuzzy number; Score function; Kernel function; SETS; GAME;
D O I
10.1007/s00500-012-0937-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy support vector machine applied a degree of membership to each training point and reformulated the traditional support vector machines, which reduced the effects of noises and outliers for classification. However, the degree of membership only considered the distance from samples to the class center in the sample space, while neglected the situation of samples in the feature space and easily mistook the edge support vectors as noises. To deal with the aforementioned problems, the support vector machine based on intuitionistic fuzzy number and kernel function is proposed. In the high-dimensional feature space, each training point is assigned with a corresponding intuitionistic fuzzy number by the use of kernel function. Then, a new score function of the intuitionistic fuzzy numbers is introduced to measure the contribution of each training point. In the end, the new support vector machine is constructed according to the score value of each training point. The simulation results demonstrate the effectiveness and superiority of the proposed method.
引用
收藏
页码:635 / 641
页数:7
相关论文
共 50 条
  • [41] Kernel local outlier factor-based fuzzy support vector machine for imbalanced classification
    Wang, Kefan
    An, Jing
    Yu, Zibo
    Yin, Xingshu
    Ma, Chao
    Concurrency and Computation: Practice and Experience, 2021, 33 (13)
  • [42] Robustified distance based fuzzy membership function for support vector machine classification
    Mohammadi, M.
    Sarmad, M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2019, 16 (06): : 191 - 204
  • [43] Intuitionistic Fuzzy Twin Support Vector Machines
    Rezvani, Salim
    Wang, Xizhao
    Pourpanah, Farhad
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (11) : 2140 - 2151
  • [44] A TIGHT SUPPORT KERNEL FOR SUPPORT VECTOR MACHINE
    Xie, Zhi-Peng
    Chen, Duan-Sheng
    Chen, Song-Can
    Qiao, Li-Shan
    Yang, Bo
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, : 460 - +
  • [45] Fuzzy support vector machine using local outlier factor and intuitionistic fuzzy sets for imbalanced datasets
    Hu, Mengya
    Lu, Shaowu
    JOURNAL OF CONTROL AND DECISION, 2024,
  • [46] Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification
    Jia-Bin Zhou
    Yan-Qin Bai
    Yan-Ru Guo
    Hai-Xiang Lin
    Journal of the Operations Research Society of China, 2022, 10 : 89 - 112
  • [47] Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification
    Zhou, Jia-Bin
    Bai, Yan-Qin
    Guo, Yan-Ru
    Lin, Hai-Xiang
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2022, 10 (01) : 89 - 112
  • [48] Safe intuitionistic fuzzy twin support vector machine for semi-supervised learning
    Bai, Lan
    Chen, Xu
    Wang, Zhen
    Shao, Yuan-Hai
    APPLIED SOFT COMPUTING, 2022, 123
  • [49] Support vector-based fuzzy classifier with adaptive kernel
    Ganji, Hamed
    Khadivi, Shahram
    Ebadzadeh, Mohammad Mehdi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 2117 - 2130
  • [50] Support vector machines based on hybrid kernel function
    Dept. of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
    不详
    Harbin Gongye Daxue Xuebao, 2007, 11 (1704-1706):