A large language model for electronic health records

被引:180
|
作者
Yang, Xi [1 ,2 ]
Chen, Aokun [1 ,2 ]
PourNejatian, Nima [3 ]
Shin, Hoo Chang [3 ]
Smith, Kaleb E. [3 ]
Parisien, Christopher [3 ]
Compas, Colin [3 ]
Martin, Cheryl [3 ]
Costa, Anthony B. [3 ]
Flores, Mona G. [3 ]
Zhang, Ying [4 ]
Magoc, Tanja [5 ]
Harle, Christopher A. [1 ,5 ]
Lipori, Gloria [5 ,6 ]
Mitchell, Duane A. [6 ]
Hogan, William R. [1 ]
Shenkman, Elizabeth A. [1 ]
Bian, Jiang [1 ,2 ]
Wu, Yonghui [1 ,2 ]
机构
[1] Univ Florida, Coll Med, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL 32611 USA
[2] Univ Florida, Hlth Canc Ctr, Canc Informat & Ehlth core, Gainesville, FL 32611 USA
[3] NVIDIA, Santa Clara, CA USA
[4] Univ Florida, Res Comp, Gainesville, FL USA
[5] Univ Florida, Integrated Data Repository Res Serv, Gainesville, FL USA
[6] Univ Florida, Lillian S Wells Dept Neurosurg, UF Clin & Translat Sci Inst, Gainesville, FL USA
关键词
Compendex;
D O I
10.1038/s41746-022-00742-2
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model-GatorTron-using > 90 billion words of text (including > 82 billion words of de-identified clinical text) and systematically evaluate it on five clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve five clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A large language model for electronic health records
    Xi Yang
    Aokun Chen
    Nima PourNejatian
    Hoo Chang Shin
    Kaleb E. Smith
    Christopher Parisien
    Colin Compas
    Cheryl Martin
    Anthony B. Costa
    Mona G. Flores
    Ying Zhang
    Tanja Magoc
    Christopher A. Harle
    Gloria Lipori
    Duane A. Mitchell
    William R. Hogan
    Elizabeth A. Shenkman
    Jiang Bian
    Yonghui Wu
    [J]. npj Digital Medicine, 5
  • [2] Large language models to identify social determinants of health in electronic health records
    Guevara, Marco
    Chen, Shan
    Thomas, Spencer
    Chaunzwa, Tafadzwa L.
    Franco, Idalid
    Kann, Benjamin H.
    Moningi, Shalini
    Qian, Jack M.
    Goldstein, Madeleine
    Harper, Susan
    Aerts, Hugo J. W. L.
    Catalano, Paul J.
    Savova, Guergana K.
    Mak, Raymond H.
    Bitterman, Danielle S.
    [J]. NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [3] Large language models to identify social determinants of health in electronic health records
    Marco Guevara
    Shan Chen
    Spencer Thomas
    Tafadzwa L. Chaunzwa
    Idalid Franco
    Benjamin H. Kann
    Shalini Moningi
    Jack M. Qian
    Madeleine Goldstein
    Susan Harper
    Hugo J. W. L. Aerts
    Paul J. Catalano
    Guergana K. Savova
    Raymond H. Mak
    Danielle S. Bitterman
    [J]. npj Digital Medicine, 7
  • [4] The shaky foundations of large language models and foundation models for electronic health records
    Michael Wornow
    Yizhe Xu
    Rahul Thapa
    Birju Patel
    Ethan Steinberg
    Scott Fleming
    Michael A. Pfeffer
    Jason Fries
    Nigam H. Shah
    [J]. npj Digital Medicine, 6
  • [5] The shaky foundations of large language models and foundation models for electronic health records
    Wornow, Michael
    Xu, Yizhe
    Thapa, Rahul
    Patel, Birju
    Steinberg, Ethan
    Fleming, Scott
    Pfeffer, Michael A.
    Fries, Jason
    Shah, Nigam H.
    [J]. NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [6] Development of Clinical Contents Model Markup Language for Electronic Health Records
    Yun, Ji-Hyun
    Ahn, Sun-Ju
    Kim, Yoon
    [J]. HEALTHCARE INFORMATICS RESEARCH, 2012, 18 (03) : 171 - 177
  • [7] Natural language generation for electronic health records
    Lee, Scott H.
    [J]. NPJ DIGITAL MEDICINE, 2018, 1
  • [8] Natural language generation for electronic health records
    Scott H. Lee
    [J]. npj Digital Medicine, 1
  • [9] Harnessing the Power of Large Language Models (LLMs) for Electronic Health Records (EHRs) Optimization
    Nashwan, Abdulqadir J.
    Abujaber, Ahmad A.
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
  • [10] Enhancing Large Language Models with Human Expertise for Disease Detection in Electronic Health Records
    Pan, Jie
    Lee, Seungwon
    Cheligeer, Cheligeer
    Martin, Elliot A.
    Riazi, Kiarash
    Quan, Hude
    Li, Na
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH 2024, 2024, : 129 - 131